
Ranking and Clustering with Advice

Tom Coleman

September 2009

Submitted in total fulfilment of the requirements

of the degree of Doctor of Philosophy

Produced on archival quality paper

Department of Computer Science and Software Engineering,

The University of Melbourne,

Victoria, Australia.

2

Abstract

There is a wide range of combinatorial optimisation problems which

provide us with local, pairwise advice about data points, and then ask

us to form a global clustering or ranking of those points. The objective

is to maximise the amount of advice respected, or minimise the amount

ignored. In this thesis, we study such problems from approximation and

heuristic perspectives, as exact solutions are unlikely, given each problem

is NP-complete.

In Chapter 3 we explore the method of relaxing a combinatorial prob-

lem to a continuous problem, and apply it to find a solution to the

problem of Affinity Clustering with Advice. We show how two

well-known relaxation techniques for Affinity Clustering problems,

namely Spectral Clustering and Semi-Definite Programming,

can be extended in a sensible way to incorporate (possibly inconsistent)

advice. We perform experiments to demonstrate that our techniques do

in fact out-perform techniques which ignore such advice, or treat it in a

simplistic fashion.

In Chapter 4 we consider local-search solutions to Min Feedback Arc

Set and Min 2-Correlation Clustering, two fundamental advice-

based problems. We consider both simple local-search approaches as

well as more complicated algorithms which are motivated by that sim-

ple approach. In the case of Min Feedback Arc Set, we perform

a thorough survey of existing algorithms on both synthetic and non-

synthetic data-sets and find that our algorithms, when combined with

a powerful existing local-search techniques, are as strong, or stronger

3

than any other technique. In the case of Min 2-Correlation Clus-

tering, we not only find that our algorithm, which uses a local-search

step, out-performs all existing algorithms, but additionally that it is a

guaranteed 2-approximator. This result is of particular interest as few

local-search algorithms have (known) approximation guarantees; in fact

we demonstrate many counter-examples throughout this thesis.

Finally, in Chapter 5, we consider the problem of k-Consensus Clus-

tering, which asks us to form a representative k-clustering of many

input clusterings. We are interested in this restriction of Consensus

Clustering as the unrestricted problem has recently been shown to be

APX-hard for minimisation. Indeed, we complement that result by pro-

viding a polynomial-time approximation scheme for both maximisation

and minimisation of k-Consensus Clustering, relying on a connec-

tion to the k-Cut problems.

4

Declaration

This is to certify that:

(i) the thesis comprises only my original work towards the PhD except

where indicated in the Preface,

(ii) due acknowledgment has been made in the text to all other

material used,

(iii) the thesis is less than 100,000 words in length, exclusive of

tables, maps, bibliographies and appendices.

Signed,

Tom Coleman

18th September 2009

5

Preface

The original work in this thesis is related to the following four papers,

three of which have been peer reviewed and appeared in conference pro-

ceedings, and fourth of which is under review:

• Coleman, T., and Wirth, A. A Polynomial Time Approxi-

mation Scheme for k-Consensus Clustering. In Proceedings of the

Twenty-First ACM-SIAM Symposium on Discrete Algorithms (2010),

to appear.

– The content of this paper forms the original work of Chapter 5.

– The metric max-k-Correlation Clustering PTAS of Sec-

tion 5.3 appeared first in this paper.

– The metric min-k-Correlation Clustering PTAS of Sec-

tion 5.4 appeared first in this paper.

• Coleman, T., Saunderson, J., and Wirth, A. A local-search

2-approximation for 2-correlation clustering. In Proceedings of the

Sixteenth Annual European Symposium on Algorithms (2008), pp.

308-319.

– The content of this paper appears as the original work on Min

2-Correlation Clustering presented in Chapter 4.

– The algorithms presented in Section 4.3.1 appeared first in this

paper.

– The experimental results in Section 4.3.2 appeared first in this

paper.

7

– The counter-examples and proof that PASTA-toss is a 2-

approximation in Section 4.3.3 appeared first in this paper.

• Coleman, T., Saunderson, J., and Wirth, A. Spectral Clus-

tering with Inconsistent Advice. In Proceedings of the Twenty-Fifth

International Conference on Machine Learning (2008), pp.152-159.

– The content of this paper forms the original work of Chapter 3.

– The construction of the spectral clustering algorithms constrain-

ed by inconsistent advice (named Methods One, Two and

Three) outlined in Section 3.6 appeared first in this paper.

– The experiments on these algorithms in Section 3.7 appeared

first in this paper.

• Coleman, T., and Wirth, A. Ranking tournaments: Local

search and a new algorithm. In Proceedings of the Ninth work-

shop on Algorithm Engineering and Experiments (2008), pp.133-

141. Also, appeared in Journal of Experimental Algorithmics, Vol-

ume 14 (2009), pp. 2.6-2.22.

– The content of this paper appears as the original work on Min

Feedback Arc Set presented in Chapter 4.

– The algorithms presented in Section 4.2.1 appeared first in this

paper.

– The experimental results from Section 4.2.2 appeared first in

this paper.

– The counter-examples in Section 4.2.3 appeared first in this

paper.

8

Acknowledgments

First of all I would like to wholeheartedly thank Tony Wirth for such a fine

job of supervising me. If he hadn’t ‘saved’ me from the mathematics depart-

ment by tempting me with such interesting algorithmic problems, I am sure

I would not be writing this thesis today. His important insights, excellent

writing advice, and attention to detail have complemented my shortcomings

in those areas. He always made time to discuss not only my work, but also,

importantly, whatever else came to mind, whether it be world events, sporting

news or the latest Apple product.

Many thanks to Peter Stuckey for keeping me going in the right direction

throughout my studies, and especially for making the time to read my thesis

in my time of need. Also, thanks to Adrian Pearce and Chris Leckie for words

of advice and encouragement.

Many thanks to Laurence Park for providing the dataset for the WebCommu-

nities set of experiments. Thanks to Compaq for the EachMovie dataset,

and to UC Irvine for the UCI repository. Thanks to Ian Davidson for encour-

aging us to work on the spectral clustering problem and for hosting me at UC

Davis, and to the Department of Computer Science and Software Engineering,

the Australian Research Council and the School of Engineering for funding

my conference attendances.

Thanks to all my family and friends for putting up with me throughout my

studies; but in particular, my parents, Helen Measday and Edwin Coleman de-

serve particular thanks for not only encouraging me from the very beginning,

but repeatedly reading and re-reading proofs of every academic document I

have ever produced. Also, special thanks to my girlfriend, Sophie Oldfield,

for supporting me in every way possible, and being excited and proud for

me, even though I consistently failed to properly keep her informed about my

9

progress.

Finally I would like to thank the Stella Mary Langford Scholarship Fund for

supporting my thesis with the Stella Mary Langford Scholarship.

10

Contents

1 Introduction 21

1.1 Optimisation . 22

1.2 Approximation . 26

1.3 Theoretical Guarantees . 27

1.3.1 Polynomial Time Approximation Schemes (PTASes) 28

1.4 Practical Interests . 29

1.5 The Intersection . 31

1.5.1 Heuristics with Guarantees . 31

1.5.2 Effective Approximation Algorithms 31

1.5.3 Super-Polynomial Running Times 32

2 Problems of Interest 33

2.1 Graph Problems . 34

2.1.1 Simple Graphs . 34

2.1.2 Signed Graphs . 35

2.1.3 Directed Graphs . 35

2.1.4 Graph Properties . 35

Graph Cuts . 36

2.2 Clustering Problems . 37

2.2.1 What the graphs mean . 38

2.2.2 Max-Cut Problems . 39

Previous Work . 40

2.2.3 Affinity Clustering Problems: RCut and NCut 41

Previous Work . 43

11

CONTENTS CONTENTS

2.2.4 Correlation Clustering Problems 44

Previous Work . 46

2.2.5 Affinity Clustering with Advice 49

Previous Work . 50

2.2.6 Consensus Clustering . 52

Previous Work . 55

2.3 Ranking Problems . 55

2.3.1 Min Feedback Arc Set . 56

2.3.2 Weighted Problems . 59

2.3.3 Rank Aggregation . 60

2.3.4 Previous Work . 60

2.4 Weighted Problems . 69

3 Relaxation 71

3.1 Linear Programming . 72

3.1.1 Rounding . 74

3.2 Semi-Definite Programming . 74

3.2.1 Laplacian Matrices . 76

Example: Goemans Williamson SDP for Max-Cut 78

3.3 Spectral Clustering . 79

3.3.1 The Spectral Relaxation . 80

3.3.2 Normalised Cut . 82

3.4 Relaxing Affinity Clustering with Advice 83

3.4.1 The Subspace Trick . 84

3.4.2 Addressing Inconsistency . 85

3.5 Relaxations of Correlation Clustering. 86

3.5.1 Min-2-CC — the Combinatorial Problem 86

3.5.2 Relaxations of Min-2-CC . 87

3.6 Affinity Clustering with Advice 88

3.6.1 Cost-Constrained . 88

3.6.2 Cost-Bounded . 90

3.6.3 Combining subspace constraints 91

3.7 Experimental Investigations . 93

12

CONTENTS CONTENTS

3.7.1 Experiment Setup . 93

3.7.2 Results . 94

3.8 Conclusion . 98

4 Local Search 99

4.1 Introduction . 99

4.1.1 Local Search . 100

4.1.2 Problem Instances . 102

4.1.3 Aims of this Chapter . 103

4.2 Min Feedback Arc Set . 104

4.2.1 The Algorithms . 104

Local-Search Algorithms . 104

Triangle-Destroying Algorithms 105

Degree Difference Algorithms 110

4.2.2 Experiments . 111

Algorithms Tested . 112

Datasets . 114

Discussion of Results . 114

The Time-Effectiveness Trade-off 116

Increasing Problem Size . 121

4.2.3 Theoretical Results . 122

Standard Bad Example . 122

The Eades algorithms . 123

Moves and Chanas . 124

4.3 Min 2-Correlation Clustering 125

4.3.1 The Algorithms . 125

Local Search for Min-2-CC. 125

Pick-a-Vertex Type Algorithms 125

The PASTA-flip Algorithm 127

4.3.2 Experiments . 131

Algorithms Tested . 131

Datasets . 132

Results . 132

13

CONTENTS CONTENTS

4.3.3 Theoretical Results . 133

Tosses . 133

Pick-a-Vertex . 135

4.3.4 Proof that PASTA-toss is a 2-approximation 135

Switching . 136

Switching-Invariant Algorithms 138

Proof that PASTA-toss is a 2-approximation 139

4.4 Conclusion . 142

5 Sampling 143

5.1 Introduction . 144

5.1.1 Preliminaries . 146

5.2 Overview . 147

5.2.1 Indyk’s Algorithm . 148

5.2.2 Adapting Indyk’s Algorithm to Min-CC. 149

5.3 A PTAS for Dense Max-k-CC . 152

5.4 A PTAS for Metric Min-k-CC . 154

5.4.1 The PTAS of Fernandez de la Vega et al. 154

Separating Large Clusters From Small 155

Separating Two Large Clusters 156

Groups of Large Clusters . 157

The FKKR algorithm . 158

Analysis of the FKKR Algorithm 159

5.4.2 Our Algorithm . 159

5.4.3 The Analysis . 160

Balanced Cut: D1 and C1 . 160

Re-balancing: D2 and C2 . 161

The Cost of C2 . 163

Analysing Phase Three. 167

5.5 Conclusion . 171

6 Conclusions 173

14

List of Figures

1.1 An Optimisation Problem. 24

1.2 The connection between Max-Cut and Min-Uncut 25

1.3 An example demonstrating that a good maximisation approximation

is not necessarily a good minimisation approximation 26

2.1 Three of the types of graph that we consider. 34

2.2 A difficulty for the Max-Cut problem. 38

2.3 An example of Ratio Cut’s shortcomings. 42

2.4 A ‘bad triangle’ for Min-FAS. 56

2.5 A demonstration of the Min Feedback Arc Set objective function. 57

2.6 When dealing with a tournament, a directed cycle must contain a

directed triangle. 58

2.7 An example of Iterated Kendall in action. 62

2.8 An example of Eades in action. 63

2.9 An example of Bubblesort in action. 64

2.10 An example of a single step of SORT. 66

2.11 An example of Quicksort in action. 68

2.12 The three possible types of weighted graph. 69

3.1 A problem for which not all optimal solutions to Min-2-CC are op-

timal for the accompanying Normalised Cut problem. 85

3.2 Heart Disease dataset, Dense advice, p = 0.75. 94

3.3 Spambase dataset, Dense Advice, p = 0.75. 95

3.4 Spambase dataset, Dense advice, p = 0.65. 95

3.5 Hepatitis dataset, Dense advice, p = 0.6 96

15

LIST OF FIGURES LIST OF FIGURES

3.6 Heart Disease dataset, Complete advice, p = 0.53 97

3.7 Spambase dataset, Complete advice, p = 0.53 97

4.1 A diagram illustrating the problem with Local Search algorithms. 101

4.2 The two local-search steps that we consider in this chapter. 105

4.3 An example of an Triangle Deletion algorithm in action. 107

4.4 An example where reversing creates a triangle whilst destroying another.108

4.5 An example of the calculations of the various Triangle Deletion

algorithms. 111

4.6 The trade-off between amount of time taken compared to the effec-

tiveness of the various algorithms as inputs to Chanas. 117

4.7 Time versus effectiveness, for the Biased dataset, p = 0.9. 117

4.8 Time versus effectiveness, for the WebCommunities dataset. 118

4.9 Time versus effectiveness, for the EachMovie dataset. 118

4.10 The effect of repeated calls to a hybrid of each algorithm and Chanas.119

4.11 The running time taken by a selection of the algorithms, as the prob-

lem size increases. 122

4.12 Standard Bad Example. 123

4.13 The Counterexample for the Eades algorithm. 123

4.14 Counter-example for the Moves local-search heuristic. 124

4.15 Flipping an edge in PASTA-flip. 130

4.16 The time/effectiveness profile on the EGFR Dataset. 133

4.17 The time/effectiveness profile on the Complete Dataset. 134

4.18 A counter-example for the Tosses algorithm. 135

4.19 A counter-example for the Pick-a-Vertex algorithm. 136

4.20 A demonstration that switching and tossing at the same vertex does

not affect the edges that are violated. 137

5.1 Examples of the differing behaviour of Min-Uncut and Min-2-CC

when cluster sizes are different. 150

5.2 Changing a pairing function p to p′ in order to make smaller loops. . 162

16

List of Tables

2.1 Summary of approximation results for k-CC and k-Cut type problems. 47

4.1 Results of Min Feedback Arc Set experiments. 115

4.2 The effect of repeated calls to a hybrid of each algorithm and Chanas.120

4.3 Similar data to Table 4.2, for the EachMovie dataset. 120

4.4 The results of running Min-2-CC all algorithms on all datasets. . . . 134

17

Notation

Throughout G refers to some kind of graph over a set of vertices V ,

sometime referred to as points. The symbol n = |V | is reserved for the

total number of vertices in the graph. In a clustering, k always refers to

the number of clusters.

The notation [`] means the set {1, 2, . . . , `}, and [`]0 = {0, 1, 2, . . . , `}. R
refers to the reals, R+ to the positive reals, and R+

0 to the non-negative

reals. The notation ∣∣object : condition
∣∣ ,

is shorthand for ∣∣{object : condition}
∣∣ .

19

Chapter 1

Introduction

In this thesis, we study algorithms for combinatorial optimisation problems. We

investigate these algorithms with two orthogonal perspectives; both practical and

theoretical. The intersection of those two perspectives is of particular interest. The

problems we study are graph problems ; we are interested in two flavours in particular:

problems which ask us to cluster vertices and problems which ask us to rank them.

An optimisation problem has an objective function: this is a measure of the qual-

ity of any feasible solution to the problem—we seek to find the solution which either

maximises or minimises that objective. The problems that we study in this the-

sis are exclusively NP-complete—that means that we cannot hope define a method

that always finds the optimal solution in a polynomial amount of time. With this

difficulty in mind, there are two approaches that we consider in order to solve such

problems well.

The theoretical approach seeks to find algorithms which are provably good ap-

proximators. This means that even for the hardest possible instance of the problem,

the algorithms will never do significantly worse than the optimal solution. Moreover,

they accomplish this whilst still operating in time polynomial in the input size. Such

algorithms are interesting from a mathematical perspective; additionally they give

practitioners confidence in the solutions that they generate. A very famous example

is the Max-Cut SDP of Goemans and Williamson [54], which is guaranteed to find

a solution with objective value within a factor of 0.878 of the best possible.

The practical approach focuses on the problem instances that occur commonly

21

1.1 Optimisation Introduction

in practice. This values algorithms for their ability to produce high quality solutions

to such instances in reasonable amounts of time. Thus we seek to find algorithms

which are fast and effective, of obvious import to those who are solving the problem

in real world situations.

In this thesis, we consider ranking and clustering graph problems from both of the

above perspectives. Additionally, we try to investigate the middle ground between

the two approaches. We test algorithms which have previously been considered only

from theoretical perspectives; we prove theoretical results about algorithms that

were only ever used as heuristics. In this way, we can say which algorithm is ‘best’

for a given problem.

1.1 Optimisation

The study of algorithms is interesting precisely because so many problems that are

simple to describe are so difficult to solve. A large class of problems—the NP-

complete problems—are widely believed to be insolvable; at least, no algorithm is

likely to exist that will find the optimal solution in reasonable time in all cases. In

this work we study algorithms that attempt to circumvent this difficulty by finding

solutions in polynomial time that, although not optimal, are approximations to the

optimal solution.

Although some problems of interest to computer scientists have a single ‘correct’

answer, many have a set of feasible solutions, of which one or more are optimal. To

be able to ‘approximate’ the optimal solution, we need to have some measure by

which we can judge the quality of any feasible solution. Once this criterion of quality

is established, we can compare the quality of some sub-optimal feasible solution to

the optimum in some meaningful way.

For example, in a scheduling problem, the quality of a solution might be measured

by the total time taken to complete all the jobs in the schedule. Although there are

many feasible schedules to complete all the jobs, there may only be one that does so

in the minimum amount of time. An approximate schedule may take a little longer

than that optimal schedule; we search for a solution does not take too much longer

than that optimal schedule. Also, we must ensure than calculating our schedule

does not take more than an amount of time polynomial in the input size.

22

Introduction 1.1 Optimisation

Restricting algorithms to polynomial running times is a standard approach to

ensuring that algorithms are practical for reasonably sized problem examples. Al-

though the super-polynomial algorithms are an alternate approach to avoiding NP-

completeness (see Section 1.5.3), we will not consider such approaches in this thesis.

A problem which admits such a quality criterion is called an Optimisation

Problem. An optimisation problem is either a maximisation problem or a minimi-

sation problem. We are interested in problems of both types, although it is often

the case that minimisation is harder (from an approximation perspective). Mathe-

matically:

Problem: Optimisation Problem

An optimisation problem P consists of:

• A set of instances I ;

• For each I ∈ I, a set of solutions to I, S(I); and

• An eponymous objective function P : I × S(I)→ R+
0

So P(I, S) measures the quality of S as a solution to I. We are asked:

Given: an instance I ∈ I;

Find: an optimal solution S∗I ∈ S(I), that is, a solution that maximises

(or minimises) P(I, S∗I).

As the specific instance that we are considering is usually fixed, we often abuse no-

tation and write P(S) rather than P(I, S); we also often write P∗ = P(I, S∗I), the

cost of the optimal solution. A diagrammatic version of that definition is illustrated

in Figure 1.1.

For example, consider the Max-Cut problem, one of the simplest graph prob-

lems. Max-Cut asks us to take a graph and split it into two pieces, maximising

the following objective:

23

1.1 Optimisation Introduction

Figure 1.1: An optimisation problem P has many instances I; P measures the
quality of a solution S ∈ S(I) to an instance I ∈ I.

Problem: Max-Cut

Given: G = (V,E) ∈ I, a graph;

Find: A partition S = (S1, S2) of V into two subsets. We seek to find a

partition to maximise the value of:

Max-Cut(G,S) =
∣∣(u, v) ∈ E : u ∈ S1, v ∈ S2

∣∣
So Max-Cut is a maximisation problem. Like many maximisation problems,

Max-Cut has a complementary minimisation problem, called Min-Uncut. We

say these two problems are complementary as they essentially are aiming to do the

same thing—they just measure the degree of success in a complementary fashion.

Min-Uncut again asks us to split a graph into two pieces whilst maximising the

number of edges cut. But in Min-Uncut, rather than directly counting the edges

cut, we measure the number of edges that we do not cut :

24

Introduction 1.1 Optimisation

Cluster 1 Cluster 2

Edges Cut

Edges Uncut (C)1
Edges Uncut (C)2

Figure 1.2: Demonstration of the Max-Cut/Min-Uncut cost of a 2-clustering
(C1, C2). As any edge in E must either be cut or uncut, we can see that
Max-Cut(G,S) + Min-Uncut(G,S) = |E|, for any solution S.

Problem: Min-Uncut

Given: G = (V,E) ∈ I, a graph;

Find: A partition S = (S1, S2) of V into two subsets, to minimise:

Min-Uncut(G,S) =
∣∣(u, v) ∈ E : u, v ∈ S1 or u, v ∈ S2

∣∣
Figure 1.2 demonstrates that for any G and S,

Max-Cut(G,S) + Min-Uncut(G,S) = |E| . (1.1)

So a solution S∗I that maximises Max-Cut for some givenG will minimise Min-Uncut

for G. That means that for any instance I, the two problems share optimal solutions.

However, a good approximation to one problem may not be a good approximation

to another.

Consider Figure 1.3. Here we have two potential solutions to a Max-Cut

problem—the optimal solution, with Max-Cut value 5, and Min-Uncut cost 0, is

well approximated for Max-Cut by the approximation, which has Max-Cut value

4, 4/5 of the optimum. However, in terms of Min-Uncut, the approximation ratio

is not even defined. So we can see that—at least multiplicatively—a good algorithm

for maximisation will not be a good algorithm for minimisation.

25

1.2 Approximation Introduction

Figure 1.3: An example demonstrating that a good maximisation approximation is
not necessarily a good minimisation approximation. Here the optimal solution is
the dotted clustering—with a Max-Cut value of 5 and a Min-Uncut cost of 0.
The dashed clustering is a good approximation to Max-Cut—it cuts 4 of the 5
edges—however as it leaves 1 edge uncut, it is (multiplicatively) far worse a solution
to Min-Uncut.

1.2 Approximation

The Max-Cut example discussed above emphasises exactly what kind of approxi-

mate solutions we aim to find for our optimisation problems. We aim to find solu-

tions that are within some fraction of the optimum, in terms of the objective value.

This is the standard measure of how well an algorithm approximates a problem,

and is the same formulation used in the very first approximation results of Garey et

al. [51] and Johnson [61].

Let us be completely clear about what we mean by an approximation factor, α:

Definition 1. A solution S to an instance I of a maximisation problem P is a

α-approximate solution if

P(I, S) ≥ αP(I, S∗I)

Similarly, if P is a minimisation problem, S is α-approximate if

P(I, S) ≤ αP(I, S∗)

For a minimisation problem, α will be greater than 1—a better solution has

a smaller α value. Indeed, later, we will see that finding solutions which are α-

approximations where α is arbitrarily close to one forms an important arm of re-

26

Introduction 1.3 Theoretical Guarantees

search in theoretical approximation algorithms.

We can approach this problem from two orthogonal directions—theoretical and

practical. Theoreticians try to design algorithms with guarantees that they will

always find good approximate solutions, running in time polynomial in the prob-

lem size—although this doesn’t always practically translate into fast, effective algo-

rithms. Algorithm engineers don’t worry about approximation guarantees—instead

their algorithm are rated by how well they tend to perform (in terms of approxima-

tion), and how long they take to execute.

1.3 Theoretical Guarantees

We now have a concept of an approximately good solution to a given instance of

an optimisation problem. We now turn our attention to designing algorithms which

will always find such solutions in a (theoretically) reasonable amount of time. If we

have an algorithm for which we can prove that we will always come within some

fraction of the optimal solution, then we can feel comfortable using it, secure in the

knowledge that we can only do so much worse than the optimum.

We define an α-approximation algorithm as one which always finds an α-app-

roximate solution. Formally:

Definition 2. An algorithm A for a problem P is an α-approximation algorithm if,

for all instances I, A(I) is an α-approximate solution.

For example, consider the following simple algorithm for the Max-Cut problem,

which runs in O(n) time:

Algorithm: Random Partitioning

Given an a graph G = (V,E) ∈ I, let S = (S1, S2) be a random 2-

clustering—that is, for each v ∈ V , let v be in S1 with probability 1/2,

and S2 otherwise.

Although the Random Partitioning algorithm seems fairly unmotivated, the

structure of the problem means that in fact we can prove something about it, on

average:

27

1.3 Theoretical Guarantees Introduction

Remark 1. Random Partitioning is an expected 1/2-approximation algorithm

for the Max-Cut problem.

Proof. Given a input graph G = (V,E), consider any edge e ∈ E. Let S = (S1, S2) =

Random Partitioning(G). Is e cut by S? The probability that e is cut is exactly

1/2. So the expected contribution to the Max-Cut objective, by e, is thus:

E(e’s contribution) = 1/2

So, by linearity of expectation,

E(Max-Cut(G,S)) =
∑
e∈E

E(e’s contribution) = 1/2|E| ≥ 1/2 Max-Cut∗

Note that to complete this proof we needed to use an upper bound on the value of

Max-Cut∗—namely that we can at most cut all of the edges ofG—so Max-Cut∗ ≤
|E|. Usually such an upper bound is needed to prove approximation guarantees.

To emphasise the point about the difference between maximisation and minimi-

sation, note that for the Min-Uncut problem, Random Clustering is not an

α-approximation algorithm for any α. The example from Figure 1.3 demonstrates

this: the expected Min-Uncut cost of a Random Clustering is 5/2, whereas

the optimal cost is 0. In fact, unless the algorithm happens to pick the correct

solution (which will happen with probability 1
24 = 0.0625), it will output a solution

with positive cost, which is infinitely worse than the optimum.

1.3.1 Polynomial Time Approximation Schemes (PTASes)

In the previous section, we discussed avoiding the NP-completeness problem by

designing algorithms which manage to run in polynomial time by not attempting

to find an optimal solution, but instead finding α-approximate solutions. In some

cases, it is possible to improve the approximation factor of an algorithm with a

corresponding increase in running time. Thus we can trade off running time for

better quality solutions.

28

Introduction 1.4 Practical Interests

If it is possible to to improve the algorithm to an arbitrarily close approximation

factor to 1, whilst maintaining running times polynomial in the size of I, then we

have a Polynomial Time Approximation Scheme (PTAS).

Definition 3. A set of algorithms (Aε) forms a PTAS for a maximisation problem

P, if, for each ε > 0, Aε runs in polynomial time (in the size of I—not necessarily

ε) and is a (1 − ε)-approximation algorithm. For minimisation, each Aε must be a

(1 + ε)-approximation algorithm.

So a problem that admits a PTAS is in one sense ‘solvable’. We have—theo-

retically—done as well as possible to overcome the intrinsic NP-completeness of the

problem.

One point that should be stressed is that although each individual algorithm Aε
is polynomial in running time, in terms of n, there is no restriction on running time

in terms of ε. So for instance, the running time can be O(n1/ε), which can be quite

impractical, even for relatively large values of ε.

As we have stated previously, the problems we consider are all members of the

set NP—the problems solvable non-deterministically in polynomial time. In fact,

each problem is NP-complete—as hard as any problem in NP. In fact, we’ll see that

most of the problems are also in another, more restrictive class: the APX prob-

lems. These are problems which admit constant factor approximation algorithms—

α-approximation algorithms, where α does not depend on n.

It is known[7] that if P 6= NP, then APX6= PTAS—the set of problems that

admit PTASes. Thus any problem that is APX-hard—as hard as any problem

in APX—cannot admit a PTAS. Although we will not directly prove it for any

problems, in this thesis we will encounter problems in this work which are known

to be APX-hard—these problems we know will not admit a PTAS.

1.4 Practical Interests

Although having theoretical guarantees about the performance of an algorithm is

reassuring for a practitioner, ultimately, it is the performance of the algorithm on

instances of the problem that are typical of their application that is their main

29

1.4 Practical Interests Introduction

concern. Additionally, worst-case running time is sometimes less important than

the average run-time of an algorithm.

Often approximation algorithms, and PTASes in general, make large sacrifices in

running time—whilst still remaining polynomial—in order to achieve better worst-

case performance bounds. Effectively this can mean sacrificing performance on most

instances in order to achieve a better approximation result on a very few ‘difficult’

instances.

For example, one PTAS (for the Correlation Clustering problem), which

we will see later, requires taking a sample and trying all possible clusterings of

that sample. Although the sample has constant size, the constant is greater than

4, 000, leading to a need to try more than 24,000 different combinations—a completely

unreasonable proposition. Here the PTAS becomes a purely theoretical object—in

this case it is not even feasible to run it for very small instances.

So the practical approach is a completely different (and often contradictory)

perspective through which to view algorithms. Whilst studying algorithms from a

theoretical perspective is rigorous, practical algorithm research is more of an exper-

imental science, or engineering problem. Here we aim to design algorithms to solve

a given problem for some set of typical instances, then experimentally validate the

performance of those algorithms as opposed to the existing approaches.

When designing algorithms for optimisation problems, there can be situations

where we can sacrifice running time for increased effectiveness. This can be similar

to the idea that led to PTASes. Or we may be able to tweak some algorithm in a

way which will tend to make it run faster, whilst degrading the performance. From

a practical perspective, it is often very difficult to say what is the correct decision

to make—such decisions are going to depend heavily on the specific application.

Also, it is a common (and under-reported) fact that algorithms which are more

effective for a given problem can often take longer to execute. When you consider

that algorithms may often be tuned in order to alter this running time/effectiveness

trade-off, we need to be careful in order to properly compare the performance of one

algorithm to another.

30

Introduction 1.5 The Intersection

1.5 The Intersection

A specific focus of this thesis is the intersection of the practical and theoretical

worlds. The difference in style between the two approaches has perhaps led to a lack

of communication between the two disciplines. We are interested in the intersection

from two directions.

1.5.1 Heuristics with Guarantees

Although algorithms designed purely from a practical perspective (heuristics) are

not designed to enjoy them, they can sometimes have theoretical guarantees. For ex-

ample, Coppersmith et al.[26] have shown that the very simple Iterated Kendall

algorithm for the Min Feedback Arc Set problem (a problem we will examine

closely) is a 5-approximation. This is an algorithm that was originally designed as a

heuristic [68]—we will see later than it is a reasonably strong performer practically.

The addition of an approximation guarantee to its list of positive points is of great

value.

In another example, Ostrovsky et al. [86] demonstrate a variant of the classic

Lloyd’s algorithm for the k-means problem that is a PTAS, given a reasonable

separation criterion on the input dataset. As variants of Lloyd’s algorithm are

ubiquitous in practical applications, yet previously had little theoretical justification,

this result is very compelling.

A heuristic with an approximation guarantee will have much greater value than

a purely theoretical algorithm, which may be completely unmotivated from a per-

formance perspective, and so—often—will perform very poorly in practice.

1.5.2 Effective Approximation Algorithms

An approximation algorithm that has been designed from a purely theoretical per-

spective certainly could be effective in practice. Even though such an algorithm may

have never even been implemented, let alone tested on a realistic data-set, it is quite

possible that the ideas that led to the algorithm being theoretically interesting may

lead to the algorithm performing well.

The case of PTASes are especially interesting. As we stated earlier, they are

31

1.5 The Intersection Introduction

often designed with no thought at all for a practical implementation—such an im-

plementation can be realistically impossible. However, it might be possible to adapt

the fundamental idea of the PTAS to a more realistic algorithm. For example in the

Correlation Clustering PTAS mentioned earlier, the concept of spending ex-

tra effort to start with a good solution on a small sample of the data, and extending

it to a full solution could prove fruitful in the design of a heuristic. Changing the

sample size, or perhaps just using a less (time) expensive algorithm on the sample—

rather than enumerating all possible solutions—could help us to obtain an algorithm

‘approximating’ the PTAS, which may work in practical situations.

1.5.3 Super-Polynomial Running Times

In this thesis, we concentrate on sacrificing solution quality to achieve polynomial

running times for NP-complete problems. However, an alternate approach is to sac-

rifice running time in order to achieve the optimal solution quality. Such algorithms

have super-polynomial running times, but can still be of interest to researchers.

In a practical scenario where problem instances remain reasonably bounded, it

may be feasible to run an algorithm that is super-polynomial in instance size. In

such cases, a brute force naive algorithm which examines every feasible solution

to the problem is often not the best optima-finding algorithm. A Dynamic Pro-

gramming [16] or Branch and Bound [75] algorithm can often find the optimal

solution in a reasonable if super-polynomial amount of time.

Theoretical algorithms also exist which find the optimal solution in super-poly-

nomial time. Fixed-parameter algorithms [37] investigate specific sub-problems

where some parameter of the problem instances is fixed to a small constant size. Such

algorithms can be very useful when an application is—or tends to be—restricted to

such bounded instances. This is similar to our restriction of the Consensus Clus-

tering problem to k clusters in Chapter 5, although in this case we are placing a

restriction on the problem solution, not the problem instances, and thus are consid-

ering a different problem, rather than a sub-problem.

We mention such algorithms for completeness—in this thesis we concentrate only

on algorithms that run in polynomial time.

32

Chapter 2

Problems of Interest

Like the Max-Cut problem, each of the problems that we consider in this thesis is

a graph problem; instances can always be represented as one or more graphs over

a set of vertices V . Each problem asks us to find some kind of configuration of V ;

either a clustering—a grouping of V—or a ranking—an ordering of V .

The nature of graphs is to provide us with pair-wise information about points—

they represent information about two vertices at a time. In this thesis, this infor-

mation can be considered advice—we do not have to follow it, but it is best if we

do. As we will see when we define the types of graphs we are interested in, the type

of advice that they provide can be disparate. However, in all cases, they provide

us with local information; in all cases the problems we are trying to solve ask us to

find some global configuration of the data.

So the challenge that we have in each problem is to make global statements about

V based only on piecemeal information. The difficulty in doing this in each case is

the inconsistency of the pair-wise information—although we would like to respect

each piece of advice that the graph gives us, in many instances this is not possible.

The way in which this inconsistency is exhibited will vary with the type of graph

involved, and with the exact problem. However, in every case, the question is how

to choose which advice to respect, and which to ignore.

33

2.1 Graph Problems Problems of Interest

(a) Simple Graph. (b) Signed Graph. (c) Directed Graph.

Figure 2.1: Three of the types of graph that we consider.

2.1 Graph Problems

2.1.1 Simple Graphs

In the problem we have considered so far, Max-Cut, each instance I was a simple

graph, the most basic instance that we will consider in this thesis. A simple graph

G = (V,E), consists of V , the set of vertices, and E, a set of unordered pairs of

distinct vertices—the edges. So (u, v) and (v, u) are the same edge, and we are

only allowed one in E—also, self-loops (u, u) are not allowed. Every problem in this

thesis will have as instances simple graphs, or some generalisation of them.

One common generalisation of a simple graph is a weighted graph; a graph

G = (V,E,w) where w : E → R+
0 is a weight function on the edges. Max-Cut can

easily be extended to operate on a weighted graph; in this context, the Max-Cut

value of a solution S = (S1, S2) is given by

Max-Cut(G,S) =
∑

e∈E,e cut

w(e)

Most problems that whose objective depends on the number of edges in some con-

figuration of a graph can be extended to a weighted graph in a similar way. The

weight w(e) of an edge indicates how important an edge is—for this reason, often it

makes sense to normalise edge weights to be in the range [0, 1]. In this case, often

a missing edge is equivalent to an edge of weight zero.

Given this definition, the simple, unweighted case can be seen as a special case

of the the full weighted case—where all weights on existing edges are 1, and non-

existent edges 0. For this reason, we sometimes refer to simple graphs as the 0/1

34

Problems of Interest 2.1 Graph Problems

case.

2.1.2 Signed Graphs

In some problems we will consider, we need to think about two or more graphs over

the same set of vertices. For instance, we may have one set of edges indicating which

vertices should be separated (viz. the simple graph for the Max-Cut problem), and

other indicating which edges should not. It is convenient to represent both of these

sets of advice with a single graph.

A signed graph is a simple graph with a labelling l on the edges, where l : E →
±1. Thus, the set of + edges could represent the edges that should not be cut, and

the − edges represent those that should. We define E+ = {e ∈ E : l(e) = +1}, and

E− similarly.

2.1.3 Directed Graphs

Some problems are defined on directed graphs (digraphs). In these problems, rather

than edges, E, we have arcs A, represented as u→ v ∈ A. An arc has a direction—

directed from one vertex (u—the tail) to another (v—the head). The problems we

will discuss on digraphs will be ordering problems. Note that digraphs can also have

weights on the arcs, leading to weighted directed graphs.

One specific subset of these graphs of particular interest are the complete ver-

sions. Here complete means that for each pair u, v ∈ V , exactly one of u → v ∈ A
or v → u ∈ A. Complete directed graphs are referred to as tournaments.

2.1.4 Graph Properties

Certain properties of graphs are of particular interest.

Definition 4. For a simple graph G = (V,E), the degree of a vertex v ∈ V is

defined to be the number of edges incident to v. Or formally

deg(v) = |u ∈ V : (u, v) ∈ E|

35

2.1 Graph Problems Problems of Interest

For a weighted graph, the degree is the sum of weights of incident edges. We

can define volS, where S ⊂ V is a subset of vertices, as the total degree of S, that

is
∑

v∈S deg(v).

Definition 5. For a directed graph, G = (V,A), the indegree is the number of arcs

directed into v:

In(v) = |u ∈ V : u→ v ∈ A|

The outdegree is the number of arcs directed out of v:

Out(v) = |u ∈ V : v → u ∈ A|

The indegree is sometimes known as the Kendall score. The indegree and outdegree

of a weighted directed graph are defined analogously to that for a weighted simple

graph.

The degree of a vertex in a signed graph is not usually important, however there

are some neighbourhoods of interest:

Definition 6. For a signed graph G = (V,E, l), and a vertex v, we have

N+(v) = {u ∈ V : (u, v) ∈ E+}

and

N−(v) = {u ∈ V : (u, v) ∈ E−}

Graph Cuts

If S ⊆ V is a subset of vertices in a graph, and S̄ = V \S are the remaining vertices,

then the quantity

cut(S, S̄) =
∣∣(u, v) ∈ E : u ∈ S, v ∈ S̄

∣∣
counts the number of edges cut when separating S from V .

Definition 7. If S ⊆ V is a subset of vertices in a graph G = (V,E), the induced

graph G|S = (S,E|S) is the graph over S containing only the edges E|S ⊆ E that

have both endpoints in S. A similar definition holds for all of the graphs defined

here.

36

Problems of Interest 2.2 Clustering Problems

2.2 Clustering Problems

The first class of problems that we consider are clustering problems. These problems

ask us to partition the set V into a family of clusters. In this thesis, we prefer a

functional style, leading to the definition

Definition 8. A clustering is a function C : V → [n]. So C(v) is the cluster that v

belongs to.

Usually a clustering function is not surjective; clustering n points into n clusters

is not usually very interesting. In fact, many problems are trivial to solve when n

clusters are allowed—for instance Max-Cut would place all vertices in singleton

clusters to cut every edge. For these problems we introduce a restriction on the

clustering function; we limit C to map to [k], for some k ≤ n. We usually refer

to such problems as Max-k-Obj (or Min-k-Obj). Max-Cut is another name for

Max-2-Cut, a special case of Max-k-Cut.

Some problems do not need the restriction on the number of clusters, but are of

particular interest when that restriction is added.

The k = 2 case. When k = 2, rather than mapping V to {1, 2}, often we instead

map V to ±1.

Graph Cuts We label the edges cut by the a clustering C:

Ec(C) = {(u, v) ∈ E : C(u) 6= C(v)} .

We define the edges uncut, Eu(C) similarly, and let ec(C) = |Ec(C)|, and eu(C) =

|Eu(C)|.
We can represent a cluster more traditionally as a partition of V , into sets

C1, . . . , Ck (this is how we talked of Max-Cut above). We will sometimes abuse

notation and write

C = (C1, . . . , Ck) where Ci = {v | C(v) = i} .

We note that as we are clustering vertices and not labelling them, the choice of

which particular cluster number gets given to which cluster is of no import. Every

37

2.2 Clustering Problems Problems of Interest

Figure 2.2: A difficulty for the Max-Cut problem. As Max-Cut can have at
most 2 clusters, two of the vertices must be placed in the same cluster, thus not
‘cutting’ one of the three edges. Choosing which of the three to cut is the challenge
for Max-Cut.

objective function we consider is agnostic towards the choice of cluster number. We

frequently refer to clustering functions which are strictly different, but lead to the

same partition of V , as the same clustering.

2.2.1 What the graphs mean

In the clustering problem that we have considered so far, Max-Cut, an edge (u, v)

on G represents the information ‘u should not be clustered with v’. This information

can be considered advice—we aim to try and follow, or respect, as much of that

advice as possible. In fact, the Max-Cut objective function measures exactly how

well we have followed the advice we have been given.

A difficultly arises when we have the additional information that ‘v should not

be clustered with x’—the edge (v, x)—and ‘x should not be clustered with u’—the

edge (x, u). In the Max-Cut problem, where we are restricted to two clusters, there

is no clustering of u, v, x that can satisfy all three of these edges. So the challenge

for solving Max-Cut is to break the correct edge (and choose which two points to

place together). Figure 2.2 demonstrates the problem.

Another type of clustering problem considers an edge (u, v) to mean ‘u should

be clustered with v’. We call these problems Affinity Clustering problems, as

an edge between u and v indicates an affinity, or similarity, between u and v. In this

case, there cannot be inherent contradictions in the input graph, and we need to

add some more restrictions to the problem to make it interesting. We will consider

such problems in Section 2.2.3.

38

Problems of Interest 2.2 Clustering Problems

A third set of clustering problems asks us to solve both of the types of problems

considered above. So we have a signed graph, where we have both must-link advice

(an edge labelled +1), and cannot-link advice. Although problems can be defined

where such graphs represent constraints on the solution space—i.e. any feasible

solution must respect the advice—in this thesis we only consider problems where

the advice is soft and can be broken. The extent to which the advice is followed

will invariably influence the objective function. We will consider such problems in

Section 2.2.4.

2.2.2 Max-Cut Problems

Max-Cut restricts us to finding 2 clusters. We can define a more general version,

where the number of clusters can be large (but is still specified—otherwise we could

just put each point in its own cluster). So we have

Problem: Max-k-Cut

Given: A graph G = (V,E);

Find: A clustering C into k clusters to maximise:

Max-k-Cut(G, C) = |(u, v) ∈ E : C(u) 6= C(v)|

An extension to weighted graphs follows easily as it did for Max-Cut earlier.

Similarly, we have

Problem: Min-k-Uncut

Given: A graph G = (V,E);

Find: A clustering C into k clusters to minimise:

Min-k-Uncut(G, C) = |(u, v) ∈ E : C(u) = C(v)|

A weighted version considers the total weight of uncut edges. Intuitively, this

means w(u, v) measures the extent to which we want to separate u and v. This

intuition is confirmed by the sub-problem which will be very important in this thesis:

metric-Min-k-Uncut, a special case of weighted-Min-k-Uncut, where the weights

39

2.2 Clustering Problems Problems of Interest

form a metric. In this case, the w(u, v) can be considered the distance between u

and v. This is due to the definition:

Definition 9. A weighted graph G = (V,E,w) is a metric graph if w obeys the

triangle inequality, that is, for all u, v, x ∈ V :

w(u, v) ≤ w(u, x) + w(x, v) (2.1)

Previous Work

Max-Cut is an old and well-studied problem in computer science. In the general

unweighted case, it is one of Karp’s [66] original 21 NP-complete problems. Al-

though there have been many approaches that have been attempted to solve the

problem [91], the most famous approach is by Goemans and Williamson [54].

Goemans and Williamson’s algorithm is a 0.878-approximation, which is achieved

by relaxing the problem to a now classical semi-definite program. We will discuss

this result in some detail in Section 3.2. Khot et al. [72] recently provided a reduction

proving, assuming the Unique Games Conjecture [71], that this result is essentially

the best possible. That is, given the conjecture, (which is generally assumed to be

true), no algorithm is likely to achieve a better approximation for the general case.

Raghavendra [92] extends this result to say something similar about SDP algorithms

for many constraint satisfaction problems.

However, researchers have met with success by focusing on more specific cases

of the Max-Cut problem. Of particular interest is the dense Max-Cut problem.

A dense problem has Ω(n2) edges in the unweighted case, or an average edge weight

in Ω(n2). A variety of results [42; 49; 6; 78] exist providing PTASes for variants of

dense-Max-Cut and other related constraint satisfaction problems.

Of particular interest—and use to us later in this thesis—is the PTAS of Frieze

and Kannan [49], which allows instances of weighted-Max-k-Cut which have neg-

ative edge weights. Although we did not allow negative weights in our definition of

weighted graphs, this generalisation will be very useful in Section 5.3. They achieve

this result by generalising Szemerédi’s [100] regularity Lemma, a famous result from

Graph Theory.

Fernandez de la Vega and Kenyon [44] then demonstrated how to extend a dense-

40

Problems of Interest 2.2 Clustering Problems

Max-k-Cut PTAS to a metric-Max-k-Cut PTAS. They construct a reduction

between the problems, which duplicates vertices, favouring vertices of high degree—

seen as more ‘important’ vertices. This means that when a dense-Max-k-Cut

PTAS samples the vertices, which they mostly do, it is more likely to choose one of

these more important vertices.

Using this maximisation PTAS, Indyk [60] provided a PTAS for the complemen-

tary minimisation problem, metric-Min-Uncut. We will describe this PTAS in

detail in Chapter 5, as well as the extension to the metric-Min-k-Uncut problem,

which was provided by Fernandez de la Vega et al. [43].

2.2.3 Affinity Clustering Problems: RCut and NCut

We now consider the case where an edge of G indicates that two vertices should

be clustered together. Specifically, we focus on the weighted case, when each edge

has weight, indicating the endpoints’ mutual affinity. So we have pair-wise informa-

tion, telling us to what extent various pairs need to be placed in the same cluster.

However, as we have no reason to separate points, the simplest of Affinity Clus-

tering problems would have a very trivial solution: place all points in the same

cluster. Obviously, such a clustering doesn’t tell us very much about our data, and

isn’t really useful at all.

If we add a single cannot-link constraint, and force two specific points to be in

different clusters—thus avoiding the all-in-one-cluster solution, we get the classical

Min-Cut problem, solvable in polynomial time by single-commodity flow algo-

rithms [48]. However, there is certainly no guarantee that we can necessarily know

which pair of points should be the ones forced into separate clusters. Additionally,

it is quite possible that one of the points will be placed in an extremely small cluster

(perhaps by itself), a situation which is not markedly better than the all-in-one-

cluster solution seen above.

Another workaround would be to force the clusters to be some given size. How-

ever, again it is unlikely that we can make any intelligent guesses about what sizes

should be used in this kind of constraint. It seems more sensible to modify the ob-

jective function to not only favour clusterings that cut the smallest weight of edges,

but also have reasonably similarly-sized clusters.

41

2.2 Clustering Problems Problems of Interest

v

Figure 2.3: As the vertex v is well separated from the other points—and thus has
very low affinity to all other points—a good Ratio Cut solution places v in a single
cluster. However, v is clearly an outlier, distracting us from the more interesting
problem of separating the grey vertices from the black. The Normalised Cut
objective factors v’s low total affinity into the objective function.

With this in mind, researchers [57] define the Ratio Cut problem (for k clus-

ters), which balanced cluster size in a fairly straightforward way:

Problem: Ratio Cut

Given: A weighted graph G = (V,E,w),

Find: A clustering C to minimise:

Ratio Cut(C) =
∑
i∈[k]

cut(Ci, C̄i)

|Ci|
.

The Ratio Cut objective function certainly serves to achieve our goal of reason-

ably-sized clusters in our clustering, however there are some problems with it.

Namely, vertices that are distant from most other vertices (outliers) and thus have

small degree (total affinity over all incident edges) tend to distort the clustering, as

they have equal influence as all other vertices. As they are outliers, it is sensible

to try and minimise their impact, and focus on vertices which are more central.

Figure 2.3 provides an example. For this reason, we can use a measure of cluster

size which is a little more sensitive than purely the number of nodes. Remembering

that:

vol(Ci) =
∑
v∈Ci

deg(v) ,

Shi and Malik [96] define:

42

Problems of Interest 2.2 Clustering Problems

Problem: Normalised Cut

Given: A weighted graph G = (V,E,w),

Find: A clustering C to minimise:

Normalised Cut(C) =
∑
i∈[k]

cut(Ci, C̄i)

vol(Ci)
.

Previous Work

History of Spectral Clustering The Affinity Clustering problems as

described have a standard solution technique, with wide application, known as Spec-

tral Clustering—which we will describe in detail in Chapter 3—a technique to

relax the combinatorial problem and to approximate it by solving a linear algebra

problem.

As linear algebra problems are very well studied, and have some very mature and

effective algorithms and software packages, Spectral Clustering is a compara-

tively quick algorithm. Additionally, the strong results that Spectral Cluster-

ing produces indicate that fundamentally it is a good relaxation, and the original

problems it aims to solve are well motivated.

Spectral Clustering has been described many times, in many different

communities, notably the work of Fiedler [45]; however, in the Computer Science

community, Shi and Malik [96] were the first to use the spectral method to solve

Normalised Cut. They clustered images into segments—contiguous region cor-

responding to a single object, or part of an object.

Meilă and Shi [81] show an interpretation of Spectral Clustering as a ran-

dom walk (rather than a relaxed solution to Normalised Cut), with clusters

corresponding to contiguous regions in which the walk remains. Another interpre-

tation [85], connecting Spectral Clustering to perturbation theory is possible.

These many justifications of the Spectral Clustering methodology are encour-

aging.

On the other hand, Nadler and Galun [84] provide some fundamental criticisms of

the spectral approach, and of the local to global clustering scheme in general. They

43

2.2 Clustering Problems Problems of Interest

demonstrate that certain types of problems, where clusters have different scales of

density, cannot be solved by spectral approaches.

Applications of Spectral Clustering Spectral Clustering has been

used to solve many real world clustering problems, in addition to the image seg-

mentation applications mentioned above. Many applications have been in the bioin-

formatics area. Notably, Paccanaro et al. [87] show an application to clustering

protein sequences, while Xing and Karp [108] show how normalised cuts can be

used to cluster micro-array data, coincidentally with feature selection. This data

captures genetic information about biological samples.

In a more mathematical application, Spielman and Teng [98] show that spec-

tral techniques perform well on bounded-degree planar graphs and finite element

meshes. These graphs are a superset of the majority of graphs found in real world

applications.

Semi-Definite Programs As we will see in Chapter 3, an alternative relaxation

for the Affinity Clustering problems is to semi-definite programs (SDPs). This

approach has been investigated by a small group of researchers.

Xing and Jordan [107] found the first SDP extension to the spectral technique.

Although compelling as a generalisation of Spectral Clustering, the SDP was

not particularly well motivated as a relaxation of the Normalised Cut problem.

Additionally it was complicated, and very expensive to run.

De Bie and Cristianini [31] improved this SDP with a much more motivated

relaxation, similar to the famous SDP of Goemans and Williamson [54] for the

Max-Cut problem. This algorithm achieved better results, and we will focus on

this SDP further in Chapter 3. De Bie [30] gives a good survey of existing techniques

to apply SDPs to machine learning.

2.2.4 Correlation Clustering Problems

In this section, we focus on problems that have to consider both must-link and

cannot-link advice. So when clustering we have to consider both a Max-Cut and

a Affinity Clustering problem at the same time.

44

Problems of Interest 2.2 Clustering Problems

Applications that lead to the above problem involve situations where pair-wise

information is easier to discover than more global information. An early example

was psychological experiments: two people might be friends, enemies or indifferent,

and we want to form groups of friendly people (or at least, non-enemies). We can

represent such a problem by a graph with edges representing feeling between two

people, and a labelling of + indicating friendship and − indicating dislike, a signed

graph of Section 2.1.

The Max-Cut problem that we have seen before corresponds to a situation

where we ignore the information about friends, and concentrate on maximising the

number of enemies that are separated. The Affinity Clustering problems cor-

respond to concentrating on creating groups of friends—ignoring dislikes. The Cor-

relation Clustering problems that we will define below ask us to concentrate

on both.

Correlation Clustering asks us to consider both the + and the − edges. As

usual, we can define both a maximisation and minimisation version. Correlation

Clustering does not require that we need to specify the number of clusters—the

+ edges will tend to lead us to bigger clusters, and the − edges to smaller ones. The

maximisation version is thus

Problem: Max-CC

Given: A signed graph G = (V,E, l);

Find: A clustering C to maximise:

Max-CC(G, C) =
∣∣(u, v) ∈ E+ : C(u) = C(v)

∣∣+ ∣∣(u, v) ∈ E− : C(u) 6= C(v)
∣∣

Similarly, we have

Problem: Min-CC

Given: A signed graph G = (V,E, l);

Find: A clustering C to minimise:

Min-CC(G, C) =
∣∣(u, v) ∈ E+ : C(u) 6= C(v)

∣∣+ ∣∣(u, v) ∈ E− : C(u) = C(v)
∣∣

45

2.2 Clustering Problems Problems of Interest

The fact that we do not need to specify the number of clusters is quite an

attractive aspect of the problem—most other clustering problems (such as Max-k-

Cut) require it, and the choice is often quite arbitrary and unmotivated. However,

when we do have a requirement on the number of clusters (see examples below), the

Max-k-CC and Min-k-CC problems refer to restricted versions.

Again, a weighted version of these problems can be defined. Weighted Cor-

relation Clustering operates on weighted complete graphs, where the weight

function w : E → [0, 1] maps each edge to to ‘how negative’ it is.

A value of 1 indicates a − edge, and a value of 0 indicates a + edge. A value in

between is less sure—to some extent it is a + edge, to some degree it is a − edge.

Thus a value of 1/2 indicates no preference as to whether that edge should be cut.

The objective function (for Max-CC) is:

Max-CC(G, C) =
∑

e=(u,v)∈E
C(u)=C(v)

(1− w(e)) +
∑

e=(u,v)∈E
C(u)6=C(v)

w(e)

As weighted Correlation Clustering operates on simple weighted graphs,

we can make a connection to weighted Max-k-Cut and Min-k-Uncut.

Max-k-CC(G, C) = Max-k-Cut(G, C) + ec(C)−Min-k-Uncut(G, C)

Min-k-CC(G, C) = Min-k-Uncut(G, C) + eu(C)−Max-k-Cut(G, C)

This is a connection that we will exploit heavily in Chapter 5.

Previous Work

Unconstrained Correlation Clustering The Correlation Clustering

problem was first investigated within the theory community by Bansal et al. [12].

They provided a reduction from Partition into Triangles to prove that the

problem was NP-complete in the unweighted case. They also provide a PTAS for

general 0/1-Max-CC, based on a randomised sampling procedure. They also con-

struct a constant-factor approximation algorithm for 0/1-Min-CC, whilst proving

the general weighted case is APX-hard.

Charikar et al. [21] showed that Min-CC is APX-hard even on 0/1 instances.

46

Problems of Interest 2.2 Clustering Problems

MAX MIN
unrestricted fixed-k unrestricted fixed-k

k-Cut N/A N/A
` 0/1 0.878 [54; 72]
` dense PTAS [6]
` metric PTAS [44] PTAS [60; 43]

k-CC
` 0/1 PTAS [12] PTAS [53] 3 [12; 21; 2] PTAS [53]

APX-hard [21]
` weighted 0.7666 [21; 99] APX-hard [33; 21]

APX-hard [21]
` metric PTAS (∗) 2 [2] PTAS (∗)
` consensus PTAS (∗) 11/7 [2] PTAS (∗)

APX-hard [18]

Table 2.1: Summary of approximation results for k-CC and k-Cut type problems.
The contributions made in Chapter 5 are indicated by (∗). Note that in most cases
a problem is APX-hard if the number of output clusters is not restricted, but has a
PTAS if there is a k-bound.

They also vastly improved the approximation factor provided by Bansal et al. (which

was extremely large, whilst still remaining constant in n). Ailon et al. [2] further

improved the approximation factor to 3, using a Quicksort-like algorithm, which

we will discuss further in Section 2.3.4.

Charikar et al.’s algorithm was based on rounding a Quadratic Program, similar

to a Semi-Definite Program, and also provided a constant factor approximation of

0.7664 for Max-CC on weighted graphs. This factor was improved slightly by

Swamy [99] to 0.7666. Additionally, Demaine et al. [33], as well as Charikar et al.,

showed that the general Min-CC problem is APX-hard.

2-Correlation Clustering The Min-2-CC problem has been repeatedly re-

discovered, and renamed, since it was first defined by Harary [58] in 1950. Harary

introduced the signed graph, whilst considering the Min-2-CC problem. He also

introduced the notion of imbalance in a signed graph, which corresponds to the

Min-2-CC∗ cost of the graph, the minimum possible amount of violated advice.

Harary considered the psychological interpretation of the problem: his aim was to

47

2.2 Clustering Problems Problems of Interest

find two highly cliquey groups.

Apart from social psychology, the study of signed graphs has many other appli-

cations, notably in statistical mechanics, where it relates to energy configurations

of the Ising model with no external field [82], and to the theory of graphs in Chem-

istry [102]. Solé and Zaslavsky [97] show a connection to coding theory: between

signings of a graph and the cut-set code defined by that graph.

Dasgupta et al. [28] provide a particularly general and interesting application

of the Min-2-CC problem, in the decomposition of large-scale biological systems.

Here a + edge indicates experimental evidence that two components of the system

are involved in the same biological processes; a − edge that they are not. The

problem is then to separate the biological system into monotone subsystems—that

is, subsets of the the system that are involved in the the same processes. Dasgupta et

al. use their Min-2-CC algorithm as a step in a decomposition in to k clusters, in

a hierarchical fashion.

k-Correlation Clustering Early results [95] demonstrated that k-CC is an

NP-complete problem, both on complete graphs, and in general.

In Bansal et al. [12]’s paper on general Correlation Clustering, they also

put forward the first approximation algorithm for Min-k-CC on complete graphs,

achieving an approximation factor of 3. It provides the inspiration for a number of

algorithms that we introduce in this thesis, and is defined:

Algorithm: Pick-a-Vertex

For each vertex v ∈ V , define a clustering Cv, defined as

Cv(u) =

+1 if u ∈ N+(v), or u = v,

−1 if u ∈ N−(v) .

Return the clustering Cv that minimises Min-2-CC(Cv).

Pick-a-Vertex runs in O(n2) time, examining each edge twice.

Giotis and Guruswami [53] completed the picture—from a theoretical viewpoint—

for k-CC on complete graphs by developing a PTAS (polynomial time approximation

48

Problems of Interest 2.2 Clustering Problems

scheme) for both the maximisation and minimisation versions of the problem. They

first take a random sample of the vertices and then use each possible clustering of

the sample as a basis for a clustering of the entire data set.

Recall that for Correlation Clustering on complete graphs, a PTAS exists

for maximisation, but minimisation is APX-hard [21].

Giotis and Guruswami’s scheme provides a (1+ε)-factor approximation algorithm

that runs in time 2O(1/ε3). However, the constants involved are large enough that the

smallest possible sample size is greater than 4000. In practice, checking every sample

clustering is infeasible, so this algorithm remains beyond practical application. We

will investigate variations of this algorithm that run in reasonable amounts of time

in Chapter 4.

On general graphs, the problem is more difficult to solve. There is a direct

relationship between Min-2-CC and Max-Cut problem: replace all + edges on the

signed graph with a pair of − edges meeting at a new vertex. Dasgupta et al. [28]

extend the Goemans Williamson SDP for Max-Cut to result to the maximisation

version of the Min-2-CC problem, achieving the 0.878-approximation factor. It is

not clear whether this algorithm is efficient in practice for the Min-2-CC problem—

we will investigate further in Chapter 4.

Finally, Huffner et al. [59] use a fixed parameter algorithm, and some data re-

duction rules, to solve Min-2-CC exactly in greatly reduced time compared to a

brute force algorithm. This is an example of the alternate approach to solving NP-

complete optimisation problems—to accept super-polynomial running time, and to

try and find (relatively) fast improvements on brute-force algorithms.

2.2.5 Affinity Clustering with Advice

In the previous sections, we discussed techniques that solve Affinity Clustering

problems through relaxations, specifically the Spectral Clustering relaxation,

and mentioned their wide application in the experimental clustering community.

Such algorithms are very useful when we have a large corpus of data in which we

have a good idea of the associations between points. However, it is possible that we

also have some combinatorial information also, in the form of advice, similar to the

problems we have seen previously.

49

2.2 Clustering Problems Problems of Interest

In the Affinity Clustering with Advice problem then, we have two graphs

defined over V , a affinity graph, which defines a Affinity Clustering problem,

and a advice graph, which defines a Correlation Clustering problem. We aim

to solve the first problem whilst respecting as much of the advice as possible.

Note that there are similar problems where the clustering is adapted to incorpo-

rate constraints. A constraint forces us to cluster vertices together or apart; on the

other hand advice simply asks us to. A constraint problem thus implicitly trusts the

source of the constraints; we consider applications where the advice is not necessar-

ily trustworthy. For example, in biology, when experimentally clustering proteins

(or genes etc), we will have a measure of the similarity of any pair of objects (the

affinity graph). It is often practical to also test associations of individual pairs,

which will tell us whether or not a pair should be clustered together (the advice

graph). However, there is no guarantee that the advice we generate in this way will

be correct.

Additionally, it is well known that human and biological ‘experiments’ are often

subject to noise. If we have enough noisy advice, that advice will be inconsistent—

that is, there is no way to cluster the data which agrees with all the advice. In

this context, a problem—or an algorithm based on such a formulation—that strictly

obeys the advice cannot function well, if at all.

Affinity Clustering with Advice differs from the other problems that we

consider in this thesis, in that it does not have an explicit objective function. Below,

we will see the approaches previous researchers have used to construct one; including

a straightforward combination of objective functions, as well as using the advice to

influence the affinities. In Chapter 3, we will provide our own construction.

Previous Work

The problem of clustering affinity data with constraints has been well studied in

the Machine Learning community. The problem was first outlined by Wagstaff

and Cardie [105], who extended the COBWEB algorithm of Fisher [47] to use

constraints. Many other researchers have adapted existing clustering algorithms

(usually designed to solved different objective functions) to incorporate constraints.

Of note are algorithms that adapt (the popular) Lloyd’s algorithm [77] for the

50

Problems of Interest 2.2 Clustering Problems

k-means problem. Bilenko, Basu, Mooney [15] create a variant that involves incre-

mentally changing the metric, simultaneously to the steps of Lloyd’s algorithm,

to respect the constraints. This is a similar idea to the metric-changing algorithms

described below.

Another Lloyd’s variant was developed by Davidson and Ravit [29]. They

change the objective function used by that algorithm from the classic least squares

k-means objective, to one that punishes each failure to respect a constraint. They

term this algorithm the CVQE algorithm. Pelleg and Ballas [90] provide a notable

improvement to this algorithm that can cope with noisy constraint sets.

Other researchers have attempted to change the metric underlying a affinity

clustering problem in an attempt to integrate advice. Xing, Ng, Jordan and Rus-

sell [109] show how to learn a Mahalanobis metric using Newton’s method for a

simple problem, and a gradient-descent approach for the general case. Bar-Hillel

et al. [13] use principal component analysis to do the same. These techniques have

the advantage of being agnostic to the clustering algorithm that is then used on the

resulting metric. The boosting techniques of Liu, Jin, and Jain [76], which change

a clustering using advice, can also have this advantage.

Many other algorithms have been developed to incorporate constraints and ad-

vice into different clustering formulations. However, as the underlying clustering

problem that they attempt to solve is not an Affinity Clustering problem, it is

difficult to judge which would be ideal for Affinity Clustering. This is a general

difficulty with the wealth of clustering criteria.

There are some algorithms which attempt to incorporate constraints into Spec-

tral Clustering (the usual solution to Affinity Clustering problems). Of

particular interest is the algorithm of Kamvar, Klein and Manning [63], called “spec-

tral learning” which works via modifying the Laplacian matrix used in the Spec-

tral Clustering algorithm. Essentially, they set the affinity between two vertices

to be 1 if they are linked by a + edge, and 0 otherwise (with some relevant scaling).

These changes seem arbitrary and unmotivated, as they ignore the affinity informa-

tion between those vertices, as well a choosing a new affinity that depends on the

distribution of other affinities in a problematic way.

To highlight this point, consider the following two scenarios. If most vertices

are reasonably uniformly separated, then + edges will not have a very large effect,

51

2.2 Clustering Problems Problems of Interest

as the strongest affinity is not significantly higher than any other affinity. On the

other hand, if a single pair of vertices have much higher affinity than all others—

perhaps the same data-point sampled twice with noise—then a + edge will force

the end-points similarly close. But which situation happens depends entirely on the

distribution of the affinity data, and is not controlled by the algorithm implementer.

This is an unsatisfactory situation.

The Subspace Trick An interesting method to combine advice into an algorithm

that uses relaxation—such as Spectral Clustering—is to transform the combi-

natorial advice into continuous constraints. In the linear algebra setting, which the

Spectral Clustering algorithm operates in, this results in what is known as the

‘subspace trick’.

It was first outlined by De Bie, Suykens and De Moor [32], and Yu and Shi [110].

We will extend the technique and provide further motivation in Chapter 3.

2.2.6 Consensus Clustering

The problems we have been discussing so far have involved taking local, pair-wise

data, and turning it into a global organisation of the graph. Although there are

plenty of applications in which such pair-wise data is available, an important source

of such problems involves reducing problems with global data to pair-wise problems.

One example of such a problem is Consensus Clustering. This problem

asks us to find a representative clustering for a input set of clusterings. Consensus

Clustering can be used to combine the wealth of different clusterings that different

clustering algorithms provide. This is of much help, as there are many formulations

of clustering, and thus different algorithms can be aiming to maximise very different

objective functions—it isn’t always clear which should be used. So we can have

a wealth of clusterings of a given data set, with no clear idea of which is ‘right’.

It makes sense to try and amalgamate these clusterings into one clustering which

represents the consensus of the collection.

The connection between these Consensus Clustering and the pair-wise clus-

tering problem we have defined above is due to the choice of measure of the quality

of the consensus.

52

Problems of Interest 2.2 Clustering Problems

Problem: Consensus Clustering

Given: A set of clusterings C over a common set V ;

Find: A clustering C, to minimise

Consensus Clustering(C, C) =
1

|C|
∑
C′∈C

M(C, C ′)

where

M(C, C ′) =
∣∣u, v ∈ V : C(u) = C(v) and C ′(u) 6= C ′(v)

or C(u) 6= C(v) and C ′(u) = C ′(v)
∣∣

The measure M (the Mirkin [83] distance between two rankings, also known as

the Rand index) leads to a connection between Consensus Clustering and Cor-

relation Clustering because of the pair-wise nature of the distance function—

two clusterings are measured to be different by the number of pairs of points that

are clustered differently, relative to each other. Certainly other distance measures

are possible, but this is a very natural formulation, and is commonly used.

To see exactly how this plays out, consider the following reduction, from Con-

sensus Clustering to weighted Correlation Clustering.

Reduction 1. Let a set of clusterings C over V be an instance of Consensus

Clustering. Construct an instance of Correlation Clustering on the fol-

lowing weighted graph G = (V,E,w), where E = {(u, v) | u, v ∈ V } (so G is

complete), and, for u, v ∈ V ,

w(u, v) =

∣∣C ′ ∈ C : C ′(u) 6= C ′(v)
∣∣

|C|

.

Proposition 1. Reduction 1 is an approximation preserving reduction.

Proof. Let C be any solution to the Correlation Clustering problem on G =

(V,E,w). Consider the cost of C as a solution of the original Consensus Clus-

53

2.2 Clustering Problems Problems of Interest

tering problem.

Consensus Clustering(C, C) =
1

|C|
∑
C′∈C

K(C, C ′)

=
∑
u,v∈V
C(u) 6=C(v)

w(u, v) +
∑
u,v∈V
C(u)=C(v)

(1− w(u, v))

= Correlation Clustering(G, C)

So, as clustering will have the same cost in both problems, they share optima—

and a α-approximate solution to one will be an α-approximate solution to the other.

In fact, the instances of Correlation Clustering that are generated by

Reduction 1 have an additional property; the triangle inequality:

Proposition 2. Let G = (V,E,w) be an instance of Correlation Clustering

generated by Reduction 1. Then, for all u, v, x ∈ V ,

w(u, v) ≤ w(u, x) + w(x, v)

Proof. Consider any clustering C ′ ∈ C. Then, if C ′(u) 6= C ′(v), then either C ′(u) 6=
C ′(x) or C ′(x) 6= C ′(v) (or possibly both if there are at least three clusters). So if C ′

contributes 1
|C| to w(u, v), it must contribute at least the same amount to the sum

w(u, x) + w(x, v). Running over all C ′ ∈ C completes the proof.

For this reason, the instances of Correlation Clustering that are generated

by reduction from Consensus Clustering are a subset of all instances of Cor-

relation Clustering with probability constraints and the triangle inequality.

We refer to such instances as metric-Correlation Clustering problems (this

is the same definition as for metric-Max-Cut problems). Note that Consensus

Clustering can also be defined as a maximisation problem—the same reduction

and properties hold.

54

Problems of Interest 2.3 Ranking Problems

Previous Work

Ailon et al.’s Quicksort-like algorithm, which we previously discussed in reference

to Correlation Clustering, is also 2-approximation for metric-Min-CC and,

further, and a 11/7-approximation for instances of metric-Min-CC resulting from

Consensus Clustering. However, Bonizzoni et al. [18] showed that a significant

improvement to this result (a PTAS for the problem) is unlikely by demonstrating

that Consensus Clustering problem is APX-hard, even with just three input

clusterings. Remembering that Giotis and Guruswami were able to overcome the

APX-hardness of 0/1-Min-CC by restricting the problem to Min-k-CC, this leads

one to speculate whether the Consensus Clustering problem, restricted to k

output clusters, is also APX-hard or has a PTAS. We answer this question in Chap-

ter 5.

Consensus clustering can be used to form one representative ‘meta’-clustering

when a series of clusterings of a common dataset is known. Filkov and Skiena [46]

show an application to clustering micro-array data as a bioinformatics application.

Gionis et al. [52] perform an extensive study of the Consensus Clustering prob-

lem, comparing many of the existing algorithms. Bertolacci and Wirth [17] fol-

low this up with a experimental study comparing many of the existing theorically-

justified algorithms with some simpler heuristics.

2.3 Ranking Problems

The second class of problems that we consider are ranking problems on directed

graphs. These problems ask us to rank, or order, the vertices of the digraph from

left to right, whilst trying to follow advice given by the arcs. An arc u→ v on the

digraph represents advice that u should be ranked before v. So our problem is to

take the local information encoded by the arcs, and construct a global ordering over

all the vertices.

If the digraph is acyclic—it is a Directed Acyclic Graph (DAG)—we can form a

ranking over the entirety of V by taking a Topological Sort of G. A Topo-

logical Sort of a DAG G is any ranking of V that agrees with every arc in G.

A simple depth-first search algorithm for Topological Sort, by Tarjan [101] can

55

2.3 Ranking Problems Problems of Interest

Figure 2.4: A ‘bad triangle’ for Min-FAS. There is no ordering of the three vertices
that respects all three arcs. The best possible ordering has a single back-arc, as
shown. Note that on the right-hand side, only the back-arc is pictured; there are
two arcs that point to the right that are not pictured.

achieve this in time O(n + m). This is quite a satisfying situation as we have per-

fectly turned the local information encoded in the graph into a global property of

the digraph.

However, if the digraph is not a DAG—there is a cycle in the graph—then

we cannot find any order over the vertices in which every arc in G is respected.

For example, suppose we have the arcs u → v, v → x, x → u ∈ A. Then there

is no ordering of u, v, x that agrees with all three arcs. Figure 2.4 demonstrates

this situation. Note that in this picture, as with all tournament diagrams, when

the vertices are ordered (as they are on the right) only the backwards (leftwards)

pointing arcs are drawn. It is assumed that any pair of vertices that have no arc

between them have a rightward pointing arc.

This is analogous to the triangle of edges situation that is difficult for Max-

Cut (see Section 2.2.1). The challenge is then to find a ranking of V which is as

consistent as possible with G. So in fact the cycles in G encode the difficulty in

ranking G.

2.3.1 Min Feedback Arc Set

A simple example is a sports competition. Suppose we have a competition where

some teams play each other and we need to form a final ranking of the teams. Then

the games that have been played tell us something about how the final ranking

should look—if team A beat team B that is an indication that A should be ranked

above B in the final ordering. So each game forms an edge in our ‘competition’

graph. If the competition was round-robin (each team played each other once) then

the graph that results is a tournament graph.

56

Problems of Interest 2.3 Ranking Problems

1

2

4

5
3

1 2 3 4 5

Figure 2.5: A demonstration of the Min Feedback Arc Set objective function.
An optimal arrangement of the tournament on the left is displayed on the right.
This ranking has cost 2, indicated by the two back-arcs.

How do we represent this ranking (or sporting ladder)? In this thesis, we take a

functional approach. So

Definition 10. A ranking π is a bijection from the vertices V to [n] = {1, 2, 3, . . . , n}
where n = |V |. If π(u) > π(v) we say u is ranked after (to the right of) v.

A ranking can also be viewed in a more traditional way as a permutation of V .

Then, without loss of generality, we abuse notation and write

π = (v1, v2, . . . , vn) where π(vi) = i

The natural problem to consider in this context is to find a ranking which agrees

as much as possible with the digraph. Here the input information is a directed

graph, where an arc u→ v ∈ A indicates that π should rank u before v. So we have

an obvious minimisation problem:

Problem: Min Feedback Arc Set (Min-FAS)

Given: A directed graph G = (V,A);

Find: A ranking π to minimise:

Min-FAS(G, π) = |u→ v ∈ A : π(u) > π(v)|

The Min-FAS objective function thus counts the number of arcs that point

from right to left; such arcs are sometimes called ‘back-arcs’. A demonstration of

the Min-FAS objective function is given in Figure 2.5.

57

2.3 Ranking Problems Problems of Interest

a

b

a

b

a

b

?

c

c

c

d

d

d

e

e

e

Figure 2.6: When dealing with a tournament, a directed cycle must contain a di-
rected triangle. If a → b ∈ A, then a → b → c → a is a directed triangle (~4). If
b → a ∈ A, a → d → · · · → e → b → a is a smaller cycle, and we can recurse. As
the the graph is a tournament, one of the cases must hold.

When a tournament is laid out in some order, to form a cycle there must be an

arc pointing left, so is easy to see that after removing all the back-arcs from G, what

remains will be be acyclic.

For this reason, the set of back-arcs is known as a feedback arc set—as removing

this arc set removes all feedback (cycles) from the graph. Min-FAS on tournaments

is particularly interesting. One reason is that each cycle on a tournament must

contain a directed triangle (see Figure 2.6). This gives special structure to the

problem which we will exploit later.

Of course, Min-FAS has a complementary maximisation problem: this corre-

sponds to counting the number of arcs that are not deleted—this set of arcs will

form an acyclic subgraph of G. So the problem is:

58

Problems of Interest 2.3 Ranking Problems

Problem: Max Acyclic Subgraph

Given: a directed graph G = (V,A)

Find: a ranking π to maximise:

Max Acyclic Subgraph(G, π) = |u→ v ∈ A : π(u) < π(v)|

2.3.2 Weighted Problems

Correspondingly with Correlation Clustering, we consider a specific type of

weighted graph for the Min-FAS problem. We have as input a weighted tournament,

(V,A,w). The weight w(u → v) is the extend to which u should be placed before

v—we incur a cost of w(u→ v) if π(u) > π(v) and a cost 1− w(u→ v) otherwise.

The above formulation is a special case of a more general problem, known as

the Linear Ordering [22] problem. In this problem, each pair of vertices has

two arcs, one for each direction. Each arc has its own weight. Thus the need for

the graph to be directed is no longer relevant. In fact, since the weights are really

the only important quantities, we can use a matrix of the arc weights as a problem

instance. So we have

Problem: Linear Ordering

Given: an n× n matrix M,

Find: a ranking π to minimise:

Linear Ordering(M, π) =
∑

i,j∈[n] :π(i)<π(i)

mij

The Linear Ordering ordering problem is similar enough to Min-FAS that we

can often use algorithms designed for Linear Ordering for Min-FAS. Otherwise,

we will not consider the problem further.

59

2.3 Ranking Problems Problems of Interest

2.3.3 Rank Aggregation

Min-FAS is also related to a fundamental aggregation problem. This can be shown,

corresponding to Consensus Clustering, to be a specification of weighted Min-

FAS with the triangle inequality. The Rank Aggregation problem has many

applications, including that of Metasearch [9]—combining the output of multiple

search engines into a single, hopefully better, search result. The definition of Rank

Aggregation is:

Problem: Rank Aggregation

Given: A set of rankings Π over a common set V ;

Find: A ranking π, to minimise

Rank Aggregation(Π, π) =
1

|Π|
∑
π′∈Π

K(π, π′)

where K is the Kemeny distance [67] (or Kendall, or inversion distance),

a measure of the number of pairs of vertices that are ordered differently:

K(π, π′) =
∣∣u, v ∈ V : π(u) < π(v) and π′(u) > π′(v)

∣∣

2.3.4 Previous Work

Applications of Min-FAS. The Min Feedback Arc Set problem was origi-

nally motivated by problems in circuit design [62], although it has found application

in many areas. In the general case it can be used to model constrained scheduling

problems, such as are common in compiler design; it has applications in computa-

tional chemistry [73; 88], and graph drawing [40; 34].

Other applications, especially for the restriction to tournaments, come from the

connection to Rank Aggregation. Dwork et al. [38] first outlined this connection,

and motivated it as a method for aggregating data from search engines. There is a

significant body of work studying this problem, which is known as MetaSearch [9].

Some authors consider the Rank Aggregation problem in isolation. One

perspective is to treat the input rankings as a samples of some unknown, ‘true’

60

Problems of Interest 2.3 Ranking Problems

ranking under some noise model. Given such a formulation, Meilă et al. [80] de-

velop a maximum-likelihood estimator which will find the ranking which has the

highest probability of being that ‘true’ ranking under an exponential noise model.

Of course in many applications, there is no ‘true’ ranking, as ranking is usually a

very subjective problem. However, Conitzer and Sandholm [24] add extra interest

to the area by pointing out many commonly-used voting rules (which are of course

simply Consensus Clustering algorithms) can be paired with particular noise

models for which they are the maximum-likelihood estimators.

Heuristics for Min-FAS. The problem of Min-FAS is familiar to organisers

of sporting leagues—often each team plays each other once, and a ladder must be

constructed which ranks the teams as fairly as possible. In this context, it is natural

to ask to minimise the number of upsets as a measure of ‘fairness’. The standard

heuristic for this problem is—unsurprisingly—a simple one. We rank each team by

the number of wins it has achieved. In the graph version of the problem, where a

match is represented by an arc pointing from the loser to the winner, this is simply

the indegree. This means that the best teams (vertices) will be placed on the right

hand side when we order by indegree. The indegree has traditionally been given

another name, after Kendall [68], the first to propose this algorithm to solve Min-

FAS. The Kendall score of a vertex v is simply v’s indegree—that is the number

of other vertices x, such that we have a statement of the form ‘x should be ranked

before v’.

The one complication to ordering by Kendall score is in resolving the issue of

ties—what happens if two teams have the same number of wins? Sporting leagues

tend to use domain-specific solutions to the problem (e.g. goal difference). Ali et

al. [3] and Cook et al. [25] propose a more general solution: for a set of vertices

S ⊆ V of the same Kendall score, break the tie by performing the same process

on G|S, the subgraph induced by S. We refer to this algorithm as the Iterated

Kendall algorithm, and it can be implemented in O(n2) time:

61

2.3 Ranking Problems Problems of Interest

1

2

4

5
3

in(5) = 3

in(1) = 1

in(2) = 2

in(4) = 2

in(3) = 2

Order by Indegree

1 5

4

3

2

in(4) = 2

in(2) = 0

in(3) = 1

Order by Indegree

1 2 3 4 5

Figure 2.7: An example of Iterated Kendall in action. The set {2, 3, 4} has
equal indegree, so the algorithm iterates on that subset.

Algorithm: Iterated Kendall

1. Calculate the Kendall score of all vertices.

2. If all vertices have the same Kendall score, return an arbitrary rank-

ing.

3. Let π0 be a ranking such that π0(v) be the number of vertices with

lower Kendall score than v.

4. For each subset S ⊆ V of equal Kendall score (including singleton

subsets), let π1 = Iterated Kendall(G|S). For v ∈ S, let π(v) =

π0(v) + π1(v).

5. Return π.

An example of the Iterated Kendall algorithm in action is displayed in Fig-

ure 2.7.

Eades et al. [39] created an algorithm that is in fact quite similar to Iterated

Kendall, possibly inspired by selection sort. Again we choose the vertex v of

lowest Kendall score to place on the left-hand side of the ranking. The difference

is that we then re-compute Kendall scores for the remaining vertices by considering

the subgraph remaining after removing v. The algorithm is still O(n2):

62

Problems of Interest 2.3 Ranking Problems

1

2

4

5
3

in(5) = 3

in(1) = 1

in(2) = 2

in(4) = 2

in(3) = 2

1 3 4 5 2

Lowest Indegree: 1

1

2

4

5
3

in(5) = 2

in(2) = 1

in(4) = 2

in(3) = 1
Lowest Indegree: 3

1 3

2

4

5
in(5) = 1

in(2) = 1

in(4) = 1

Lowest Indegree: 4

1 3 4

2

5
in(5) = 0

in(2) = 1

Lowest Indegree: 5

Figure 2.8: An example of Eades in action.

Algorithm: Eades

1. Choose the vertex m of minimal indegree.

2. Let π0 = Eades(G|V \{m}).

3. Return

π(v) =

1 if v = m,

π0(v) + 1 otherwise.

An example of the Eades algorithm in action is displayed in Figure 2.8.

Sorting algorithms Figure 2.8 makes it clear how the Eades algorithm can be

seen as an adaption of Selectionsort. In fact, many sorting algorithms can be

adapted in a straightforward way to apply to the Min-FAS problem, which Bar-Noy

and Naor [14] were the first to discuss. This is due to the similarity in structure

between the Min-FAS problem and the classic problem of sorting.

63

2.3 Ranking Problems Problems of Interest

3 1 4 2 5

3 Moves 3 Stays 4 Moves 4 Stays

1 2 3 4 5

1 3 2 4 5

1 Stays 3 Stays 4 Stays3 Moves

Figure 2.9: An example of Bubblesort in action.

Unlike traditional sorting problems, in which we assume there is a total order on

the data, in FAS we have no such ordering. In fact the very difficulty in FAS is the

lack of transitivity, which sorting algorithms are designed to exploit. Nevertheless,

sorting algorithms provide schemes for deciding which of the advice to believe—we

can use them to decide in which order to respect the arcs.

So we can define a general strategy for FAS based on some sorting algorithm S;

run S over the vertices of G, using as the comparison function “u < v if and only if

u → v”. On weighted instances this becomes “u < v with probability w(u → v)”,

leading to a randomised algorithm.

For instance, using this strategy, Bubblesort is defined as follows (of course

running in O(n2)):

Algorithm: Bubblesort

1. Begin with a random ordering π.

2. Consider each j ∈ [n]. If there is an arc u→ v, where π(u) = j and

π(v) = j − 1, then swap u and v.

3. If π changed in step 2, repeat.

An example of the Bubblesort algorithm in action is displayed in Figure 2.9. Note

64

Problems of Interest 2.3 Ranking Problems

that every step of the Bubblesort algorithm improves the cost of the ranking; in

fact it is a variant of the Swaps local-search heuristic we use in Chapter 4. For this

reason, the algorithm must terminate.

Cook et al. [25] develop an algorithm designed to ensure that a Hamiltonian path

exists along the ranking of the vertices; any sensible algorithm should achieve this.

The method they use to achieve this is in effect a Bubblesort as described above.

Chanas and Kobylanski [19] apply an insertion technique to the Linear Order-

ing problem that is more involved than the usual Insertionsort. As a subroutine,

they use what is in effect one run of Insertionsort, which they name SORT. It is

defined as follows:

Algorithm: SORT

Given an ordering π over a digraph G,

1. For i ∈ [n], let v be the vertex such that π(v) = i, do the following:

2. For each j ∈ [i], let πi,j be the ordering defined by moving v to

position j, whilst leaving the remaining vertices in the same order.

3. Update π to be the πi,j that minimises Min-FAS(G, πi,j).

4. Next i.

Obviously this sort step runs in time O(n2). An example of the SORT step in action

is displayed in Figure 2.10.

Since executing SORT cannot increase the number of back-arcs, the authors

first propose an algorithm SORT* which repeatedly applies SORT until there is no

improvement in the number of back-arcs. They also show that the composition of

two steps SORT ◦ REVERSE (where REVERSE simply reverses the order of the

nodes) cannot increase the number of back-arcs. This is because in effect SORT ◦
REVERSE is the same procedure operating from the right hand side. The Chanas

algorithm is therefore (SORT* ◦ REVERSE)*, which the authors have demonstrated

outperforms SORT* alone on general graphs. The worst-case running time is then

O(n4) as the initial cost is O(n2), however the running time tends to be much better

as each step tends to greatly improve the cost.

Saab [94] presents an algorithm using a divide-and-conquer approach. The idea

65

2.3 Ranking Problems Problems of Interest

3 1 4 2 5

Insert 3

3
Insert 1

31
Insert 4

31 4

Insert 2

1 2 3 4

Insert 5

1 2 3 4 5

Figure 2.10: An example of a single step of SORT. Note that SORT ◦ REVERSE
is simply the same process, beginning from the right-hand side (i.e. inserting nodes
in the order 5, 2, 4, 1, 3).

66

Problems of Interest 2.3 Ranking Problems

is to split the input into two halves, minimising the number of back-arcs between the

halves, and then recurse on each half. However this minimisation task is a difficult

one: it is a directed version of Min Bisection—the Min-Cut-style problem that

asks us to cluster the vertices into two equal sized clusters—known to be APX-

hard [72], and solving it would solve Min-FAS. So this algorithm is simply deferring

the Min-FAS problem to a Min Bisection problem.

Theoretical Results When considered on general graphs, the Min-FAS prob-

lem is one of Karp’s [66] original NP-complete problems. Dwork et al. [38] proved

the Rank Aggregation problem is NP-complete, even with as few as 4 input

rankings. Min-FAS restricted to unweighted tournaments was also conjectured [11]

to be NP-complete, although the proof only came recently, first with randomised

reductions [2]. Deterministic reductions were found by two groups of researchers in-

dependently [20; 4]. A NP-completeness proof for the case of bipartite tournaments

(a directed complete bipartite graph) was also found by Gou et al. [56].

Given these results, it is natural to ask for an approximation algorithm which

runs in polynomial time, yet is guaranteed to differ in cost from the optimal solution

by a small factor.

In the general case, the best known algorithm is a log(n) log log(n)-approximation

algorithm by Even et al. [41]. In the bipartite case, Dom et al. [36] find fixed pa-

rameter algorithms for both Min-FAS and the closely related Feedback Vertex

Set problem.

Recently, there has been a flurry of activity in the approximation algorithms

community focused on the Min-FAS problem for tournaments. The first constant

factor approximation algorithm for Min-FAS, designed primarily for tournaments,

was the pivoting algorithm of Ailon et al. [2]. Intuitively similar to Quicksort, it

runs in worst case O(n2) time, although it uses on average O(n log n) comparisons,

for an expected 3-approximation on tournaments.

67

2.3 Ranking Problems Problems of Interest

1 2 3 4 5

3

Pivot

1
2

4

5

Recurse inside each

Figure 2.11: An example of Quicksort in action.

Algorithm: Quicksort

Choose a pivot p ∈ V , uniformly at random. Let L ⊆ V be all vertices v

such that v → p, and let R = V \ (L∪{v}). Also, let πL be the ordering

of L obtained by Quicksort, and πR be the analogous ordering of R.

Output (πL, v, πR), the ordering resulting from placing vertices in L on

the left (ordered by πL), etc.

An example of the Quicksort algorithm in action is displayed in Figure 2.11. The

Quicksort algorithm is also a 11/7 approximation for instances of Min-FAS that

are generated from Rank Aggregation problems.

Coppersmith et al. [26] showed that ordering the nodes by their Kendall score

is a 5-approximator on tournament instances. This of course includes the Iter-

ated Kendall algorithm. Interestingly, in terms of approximation guarantees,

the method chosen to resolve ties is irrelevant. So an arbitrary choice is as good as

the full recursive nature of the Iterated Kendall algorithm.

Van Zuylen et al. [103] find a deterministic 3-approximation for a specific case of

Min-FAS: a slight variation that aims to expand an existing ranking to a full ranking

over all the vertices of the tournament. Their algorithm is a 2-approximation when

that problem is metric (which includes Rank Aggregation as a special case).

68

Problems of Interest 2.4 Weighted Problems

+
w = 0.7+

(a) Simple weighted
graph. Each pair of
vertices can be + linked
or − linked, with a single
weight.

+
w = 0.7+

−
w = 0.5−

(b) General weighted
graph. Each pair of
vertices is both + linked
and − linked, with any
weight on both links.

+
w = 0.7+

w = 1 − −

−
w +

(c) Weighted graph with
probability constraints.
Each pair of vertices is
both + linked and −
linked, but the weights
must add to 1.

Figure 2.12: The three possible types of weighted graph, for the Correlation
Clustering problem. The Min Feedback Arc Set problem has a similar set
of three possibilities.

Kenyon-Mathieu and Schudy [69] completed the approximation picture for Min-

FAS on tournaments with a PTAS (polynomial-time approximation scheme). This

scheme comprises a local-search heuristic and the PTASes of Arora et al. [5] and

Frieze and Kaplan [50] for dense instances of the Max Acyclic Subgraph prob-

lem.

2.4 Weighted Problems

Our description of weighted versions of the Min-FAS and Min-CC problems may

seem at odds with standard formulations. Our formulation was a generalisation of

the complete unweighted version of those problems. For example, in the complete

unweighted version of Min-CC, every pair of vertices u, v ∈ V has an edge e = (u, v),

with a label l(e) = ±1. If we were to form a clustering that agreed with that label,

we would incur no cost; disagreeing with the label would incur cost 1.

In our weighted version, the edge had an additional weight, w(e) ∈ [0, 1]. This

weight represents the cost of violating e; additionally, the cost of not violating e was

defined to be 1−w(e). This generalises the 0/1 case, in which w(e) was automatically

1. Our weighted version of the Min-FAS problem is similar.

There exist other weight-based generalisations of the original unweighted prob-

lems. There are two other generalisations that we will describe here, and we demon-

strate Figure 2.12.

The first, and simplest generalisation of an unweighted problem is simply to incur

69

2.4 Weighted Problems Problems of Interest

cost w(e) if e is violated, and cost 0 otherwise. This is a very natural generalisation.

The second version is the most general, and contains both our formulation and

the previous example as special cases. In this general version, each edge has two

weights, representing the extent to which both possible restrictions apply. So in the

case of Min-CC, an pair u, v ∈ V has a positive weight w+(u, v) and a negative

weight w−(u, v). If we separate u from v, we incur the cost w+(u, v); otherwise

we incur the cost w−(u, v). In the Min-FAS case, we have two costs representing

the two possible orderings of u and v; in actuality, this is the Linear Ordering

problem, as we described it in Section 2.3.2.

Instances of this general weighted problem where one or both of the quantities

w+(u, v) and w−(u, v) must be zero for every pair u, v ∈ V results in the simple

weighted case as described above. Instances where w+(u, v) + w−(u, v) = 1 for all

u, v ∈ V are said to have probability constraints. This is exactly our formulation of

weighted graphs. Notice that in this case there is no need to record the negative

weight function w−, as it can be calculated from w+, so we can specify the problem

with a simple weighted graph. Similarly, we can use a weighted directed graph, with

at most one arc between any pair u, v ∈ V , for weighted Min-FAS with probability

constraints.

The reason that we restrict our attention to instances with probability constraints

in this thesis is due to the fact that the weighted instances that we are interested

in—namely those that result from the reductions from Consensus Clustering

and Rank Aggregation—are guaranteed to have this quality.

70

Chapter 3

Relaxation

The optimisation problems that we have been concerned with have been exclusively

combinatorial—problems in which discrete choices must be made. We can never say

‘these two nodes should probably be in the same cluster’—we have to say definitively

yes or no. However, there is a entire field of optimisation in which the answers which

are sought are not so discrete. In continuous optimisation, where the solution space

is continuous, there is a far larger cardinality of solution space. Perhaps surprisingly,

this is often an advantage when it comes to designing optimisation algorithms.

The combinatorial optimisation problems we have seen so far have tended to

either be trivial to solve, or NP-complete. On the other hand, there exist powerful

algorithms which solve large classes of continuous optimisation problems in polyno-

mial time. For example, linear programming (which we will discuss presently) can

describe a vast number of continuous optimisation problems—a practical solution

has existed since 1947 [27], and a polynomial time solution since 1979 [70].

For this reason, it is not surprising that one powerful technique in solving com-

binatorial problems involves ‘turning’ them into continuous problems. We do this

by relaxing the discreteness of the solution—for example, rather than requiring a

solution that definitively states which cluster each point should be in, we allow so-

lutions where points are ‘between clusters’ to some degree, and solve the resulting

continuous optimisation problem.

Of course, when we have solved the continuous problem, except for a few special

problems, it is unlikely that the solution we get out fits the original combinatorial

71

3.1 Linear Programming Relaxation

problem. We will then need to find a combinatorial solution that is ‘near’ (what

exactly is near is a very important part of the process) to the continuous solution.

We call this part of the process rounding the continuous solution. Often we can

show that this rounding will not change the cost of the solution very much, and

thus we can find very good solutions in this way.

In this chapter we will outline the basics of relaxation and show how these

techniques can be used to find a good solution to the general Affinity Clustering

problems. We will outline two basic strategies: a Semi-Definite Programming (SDP)

strategy, based on the work of De Bie and Cristianini [31]; and the more famous

linear algebra strategy known as Spectral Clustering.

We will then expand both of those techniques to find a solution to the related

problem of Affinity Clustering with Advice. We will do this by transforming

the advice that we are given (the Correlation Clustering part of the problem)

into sensible constraints on the continuous solution space.

3.1 Linear Programming

Any continuous optimisation problem consists of a set of real-valued variables (the

solution space), some constraints on those variables, and some function that pro-

duces an objective value based on those variables. A linear program (LP) is a specific

type of problem where the constraints and the objective are linear functions of the

variables.

If we represent the variables by a vector x ∈ Rn, we can write every LP in the

following form:

P1. Linear Programming

min cTx

s.t. Ax ≥ b (3.1)

x ≥ 0 (3.2)

Here, A is a m× n matrix (where m is the number of constraints), b ∈ Rm and

c ∈ Rn. The constraint (3.2) is purely a convention—if we allow negatively valued

72

Relaxation 3.1 Linear Programming

variables, we can represent them with two non-negatively valued variables.

Linear programs can be solved in polynomial time, although the most popular

algorithms, based on the Simplex algorithm of Danzig [27], are not, in fact, guaran-

teed to run in polynomial time. However, Ellipsoid [70] and Interior Point [65]

algorithms exist that solve linear programs exactly in polynomial time. Note that

the theoretically fastest known algorithms run in time O(n3l), where n is the num-

ber of variables in the program, and l is a measure of the problem size (essentially

proportional to the number of constraints).

The combinatorial problems which best relax to LPs are the Integer Programs

(IPs). These are simply LPs with the added restriction that each xi takes on integral

values. Many combinatorial optimisation problems can be framed in such a manner.

As an example, consider the problem of Min Set Cover.

Problem: Min Set Cover

Given: a set V of n elements, a collection S = (S1, . . . , Sk) of subsets

of V , and a cost function c : S → Q+,

Find: a sub-collection T ⊆ S, such that T covers V , to minimise∑
T∈T

c(T) .

Set cover can be represented by the following integer program, where xS is a 0/1

variable indicating if S is in T .

P2. Min Set Cover Integer Program

min
∑
S∈T

c(S)xS

s.t.
∑
S:v∈S

xS ≥ 1 v ∈ V

xS ∈ {0, 1} (3.3)

We can transform P2 to an linear program by relaxing (3.3) to instead read

xS ∈ [0, 1]. Then we can solve the linear program to obtain the optimal relaxed

solution x. This solution consists of a real number xS between 0 and 1 for each set

73

3.2 Semi-Definite Programming Relaxation

S ∈ S. We of course need to know definitively which sets to include in our solution

T . To achieve this, we must round the x to a integral solution.

3.1.1 Rounding

Whenever we solve a continuous version of a combinatorial optimisation problem,

we get a continuous solution. This solution is an optimal solution to the continuous

problem, and thus has objective value as good as, if not better than, the combinato-

rial problem (as the combinatorial solutions are potential solutions to the continuous

problem). However, it is unlikely that the continuous solution is a combinatorial

solution.

To get a good combinatorial solution, we must somehow find a combinatorial

solution which is close to the continuous solution. We must round the values of the

continuous solution in order to a feasible combinatorial solution. For instance, in

the Min Set Cover problem, our linear program will give us a vector x, where

0 ≤ xS ≤ 1 for each set S ∈ S. But for a combinatorial solution, we need a discrete

selection of subsets, not a fractional one.

We cannot round x in any old fashion—for example, ‘let S be in T if xS ≥ 1/2’—

as then there is no guarantee that the T that we produce will be a feasible solution

to the Min Set Cover problem. We must be a little smarter.

Suppose that f is the number of sets that the most frequently occurring ele-

ment v ∈ V appear in. Then we can use the following rounding technique, which

is only slightly smarter than the naive version written above, yet gives us a f -

approximation [104]:

Let T = { all S such that xS ≥ 1/f }.

The issue of how to round a continuous program is of fundamental importance

when designing algorithms which involved relaxations.

3.2 Semi-Definite Programming

Although linear programming is the obvious relaxation to use when the combina-

torial problem we are interested in is a integer program, it is common for the con-

straints not to be quite so simple. The constraints that P1 allows are linear in each

74

Relaxation 3.2 Semi-Definite Programming

variable—this only allows a certain amount of expressiveness about combinations of

variables.

However, as we have previously noticed with the problems that we are studying

in this work, the constraints that we are worried about for graph problems (the

advice) usually involve two variables at once. So rather than a polytope (which is

the shape in Rn formed by linear constraints), we have some other kind of feasible

region (formally a cone). Although we could make further relaxations, and work in

some polytope that contains the cone, we generally like to relax things as little as

possible (for accuracy).

To deal with such problems, we can often use a relaxation to a Semi-Definite

Program (SDP). Any SDP can be written in the following form, where Y is a n×n
symmetric matrix:

P3. Semi-Definite Programming

min C •Y

s.t. Ai •Y = bi, i = 1, . . . ,m (3.4)

Y � 0 (3.5)

Here, the Ai and C are n× n symmetric matrices, and b ∈ Rm. The Ai and b

form the constraints on the feasible region of the SDP, and the C matrix encodes

the cost function. The inner product between such n× n symmetric matrices is the

trace inner product :

X •Y = trace(XTY) =
∑
i,j

xijyij

This is essentially the standard Euclidean inner product, treating the matrix as one

large vector in Rn2
. In fact, if condition (3.5) instead read Y ≥ 0, then P3 would be

completely equivalent to P1. However, (3.5) says that Y � 0, that is Y is Positive

Semi-Definite:

Definition 11. A symmetric matrix Y is Positive Semi-Definite (PSD) if all eigen-

values of Y are non-negative. If all eigenvalues are positive, Y is Positive Definite.

SDPs can also be solved in polynomial time, here in time Õ(l3.5), where again

l is a measure of the problem size (the number of variables and the number of

75

3.2 Semi-Definite Programming Relaxation

constraints).

Our main interest in positive semi-definite matrices comes from the Cholesky

decomposition. This tells us that we can write any PSD matrix Y in terms of some

set of n vectors (xi) in Rk (where k ≤ n is the rank of Y):

yij = xi
Txj (3.6)

Or equivalently, if X = [x1 · · ·xk]T (so xi is the ith row of X), then

Y = XXT

So, with this decomposition in mind, the objective function and constraints in

P3 can be thought of a functions of various inner products of the k-dimensional

vectors xi. For instance, the value cij is now the coefficient of xi
Txj. So P3 can

take the form:

P4. Semi-Definite Programming II

min
∑
i,j≤n

cijxi
Txj

s.t.
∑
i,j≤n

a`ijxi
Txj = b`, ` = 1, . . . ,m (3.7)

3.2.1 Laplacian Matrices

The sums in P4 are especially interesting when the matrices involved are Laplacian

matrices. A Laplacian matrix is a generalisation of the graph Laplacian, a matrix

which encodes many fundamental properties of a weighted graph. Suppose that

A is a matrix representing the affinities between the vertices for a Min-Cut-style

problem. So aij = w(i, j). Then A is symmetric, with 0s on the diagonal, and we

can define the graph Laplacian of G as a matrix L, where

Lij =

deg(i) if i = j,

−aij otherwise.
(3.8)

76

Relaxation 3.2 Semi-Definite Programming

That is, L = D−A, where D = Diag(deg(i)), a n×n diagonal matrix consisting

of the degrees of the vertices of G. We can generalise this concept by changing the

underlying matrix from A to some other symmetric matrix:

Definition 12. Let X be a symmetric n × n matrix. Then the Laplacian of X,

L(X), is defined:

L(X) = Diag(X 1)−X ,

where 1 = [1, . . . , 1]T is the n-dimensional vector of ones.

Laplacian matrices have some important properties, which are standard results

in the literature [23]:

Remark 2. For any vector x, and symmetric matrix A, of appropriate dimensions

xTL(A)x =
∑
i<j

aij(xi − xj)2

Proof.

xTL(A)x = xT [Diag(A 1)−A] x

=
∑
i

(∑
j

aij
)
x2
i −

∑
i,j

aijxixj

=
∑
i,j

aijxi(xi − xj)

=
1

2

∑
i,j

aijxi(xi − xj) +
1

2

∑
j,i

aijxj(xj − xi) as A is symmetric

=
1

2

∑
i,j

aij(xi − xj)2

=
∑
i<j

aij(xi − xj)2

Corollary 1. For any symmetric A, L(A) is positive semi-definite, with smallest

eigenvalue 0, with corresponding eigenvector 1.

77

3.2 Semi-Definite Programming Relaxation

Corollary 2. Let Y be the Gram matrix of a set of k vectors xi, as in (3.6) above.

Then

L(A) •Y =
∑
i<j

aij‖xi − xj‖2

Proof. Let xk be the kth column of X. Then, by the properties of the trace,

L(A) •Y = trace(L(A)TXXT)

= trace(XTL(A)TX)

=
∑
k

xkTL(A)xk

=
∑
k,i<j

aij(x
k
i − xkj)2

=
∑
i<j

aij
∑
k

(xki − xkj)2

=
∑
i<j

aij‖xi − xj‖2

Example: Goemans Williamson SDP for Max-Cut

Let us now consider a concrete example of this Laplacian property in action; the

classic Max-Cut SDP of Goemans and Williamson [54]. If A is a matrix of edge

weights, and xi = C(vi) is the cluster membership for some clustering C (remember-

ing that C(vi) = ±1), then the Max-Cut problem can be written:

P5. Max-Cut

max
1

4

∑
i<j

aij(xi − xj)2

s.t. ‖xi‖ = 1

xi ∈ R (3.9)

If we now relax the constraint (3.9) and instead allow xi ∈ Rk for some k ≤ n,

then we have the following SDP:

78

Relaxation 3.3 Spectral Clustering

P6. Max-Cut SDP

max
1

4
L(A) •Y

s.t. yii = 1 (3.10)

Y � 0

The constraint (3.10) can easily be written in the form of (3.4); we set bi = 1, for

i = 1 to n, and Ai = Eii, the matrix with 1 in position (i, i) and zeroes elsewhere.

SDPs, similarly to LPs, can be solved in polynomial time (see e.g. [55]). So an

optimal continuous solution Y to P6 can be found; this can be decomposed to a

unit vector xi, for each point vi ∈ V .

Goemans and Williamson rounded those vectors (xi) to a clustering for the ver-

tices V , in a fashion which is now a standard technique, known as random hyperplane

rounding. We simply choose some vector r in Rn, and set C(i) = 1 iff rTxi ≥ 0. This

method yields a 0.878-approximation to the general Max-Cut problem. Moreover,

assuming the unique games conjecture, this is essentially the best possible [72] for

this problem.

3.3 Spectral Clustering

When relaxing a combinatorial problem, such as an integer program, to a continu-

ous problem, such as a linear program, we take advantage of the polynomial time

solvability of the continuous problem, sacrificing solution accuracy in the underlying

combinatorial problem. However, LPs and SDPs are very general problems—there

exist problems which can be relaxed to very specific type of continuous problems.

Spectral Clustering is a relaxation of Affinity Clustering problems to

eigenvalue problems. Such problems can be solved exactly by numerical analysis,

an area which has many highly-efficient and scalable algorithms. For that reason—

along with the high quality of real-world results—Spectral Clustering is an

important clustering technique.

Let us consider the Ratio Cut problem. As we did with the Max-Cut problem

above, if we are clustering into two clusters, we can represent any clustering C by a

79

3.3 Spectral Clustering Relaxation

vector x ∈ {±1}n—let xi = C(vi). Remember that in the two cluster case,

Ratio Cut(C) =
cut(C1, C2)

|C1|
+

cut(C2, C1)

|C2|
= n

cut(C1, C2)

|C1||C2|

Then, the objective function can be written in terms of x, using Remark 2:

Ratio Cut(x) = n

∑
i<j aij(xi − xj)2∑
i<j(xi − xj)2

= n
xTL(A)x

xTL(1)x
(3.11)

This is due of course to the fact that

(xi − xj)2 =

4 if C(vi) 6= C(vj),

0 otherwise.

We now have two options for a relaxation. The first is similar to the GW relax-

ation of Section 3.2.1; to relax xi from a one-dimensional vector in R to a full vector

in some Rk, whilst maintaining the property that ‖xi‖ = 1. This leads to a similar

SDP to P6, namely the following, similar to that of De Bie and Cristianini [31]:

P7. Ratio Cut SDP

min L(A) •Y

s.t.
L(1) •Y = 1 (3.12)

yii = q (3.13)

Y � 0

The constraint (3.12) has been added and the relevant term removed from the

denominator as the original problem is scaling invariant—that is, any two scaled

solutions x and qx will have the same value in (3.11)—so there must be a optimal

solution which satisfies (3.12).

3.3.1 The Spectral Relaxation

In the SDP relaxation, we relaxed each co-ordinate of x to be in Rk rather than

R, whilst maintaining the property that ‖xi‖ = 1. (Thus we gained a matrix

80

Relaxation 3.3 Spectral Clustering

X = [x1 · · ·xn]T , which led us to the PSD matrix Y = XXT).

In the Spectral relaxation, we instead leave xi in the one-dimensional space R,

but remove the constraint ‖xi‖ = 1. So instead of taking the values ±1, xi can take

some value in R. This is equivalent to removing the constraint (3.13) from P7, and

leads to the following problem:

P8. Un-normalised Spectral Clustering (Ratio Cut)

min xTL(A)x

s.t.
xTL(1)x = 1 (3.14)

This problem can be modified slightly by adding the redundant constraint xT1 =

0—we can assume this as xTL(A)x is invariant under translation (refer to Re-

mark 2). Then P8 becomes:

P9. Un-normalised Spectral Clustering (Ratio Cut) II

min xTL(A)x

s.t. xT1 = 0

‖x‖2 = 1/n (3.15)

The constraint (3.15) follows as

xTL(1)x = xT (nI− 1) x = n‖x‖2

As we know (Corollary 1) that 1 is the eigenvector of L(A) with smallest eigen-

value, the Rayleigh-Ritz theorem [93] tells us the solution to P9 is given by the

second smallest eigenvector of L(A)—scaled to satisfy (3.15). This vector is well

studied—it is known as the Fiedler [45] vector. So we can find the exact solution to

minimise the Ratio Cut objective in the relaxation.

Of course the Fiedler vector is a relaxed solution; we need to round it to produce

a feasible solution to the Ratio Cut problem. Fortunately, in the two cluster case,

rounding is straightforward. As the value xi indicates cluster membership (remem-

ber in the combinatorial problem xi = ±1, depending on cluster membership), it

81

3.3 Spectral Clustering Relaxation

makes sense to order the vertices by xi value, and split the list into two clusters at

some mid-point.

There are n− 1 choices of such mid-points, and it is a simple matter to test the

Ratio Cut cost of each choice. We can then choose the minimum partition that

we have found. Another simpler rounding technique is simply to cut at zero—place

all points with xi ≥ 0 into one cluster, and other points into another. This is the

technique that we will use in our experiments.

3.3.2 Normalised Cut

The Normalised Cut problem is similar to the Ratio Cut problem. We will

sketch a similar construction of Normalised Cut SDP and spectral relaxations,

both of which follow in a fashion similar to the Ratio Cut relaxations given above.

Remembering that, for two clusters, vol(X) =
∑

v∈X deg(v), and

Normalised Cut(C) =
cut(C1, C2)

vol(C1)
+

cut(C2, C1)

vol(C2)
= vol(V)

cut(C1, C2)

vol(C1) vol(C2)
,

we produce an analogy of (3.11), where d = [deg(v1), . . . , deg(vn)]T :

Normalised Cut(x) = vol(V)

∑
i<j aij(xi − xj)2∑

i<j deg(vi) deg(vj)(xi − xj)2

= vol(V)
xTL(A)x

xTL(ddT)x
.

Again, if we relax xi to be in Rk, we get, completely analogously to P7,

P10. Normalised Cut SDP

min L(A) •Y

s.t.
L(ddT) •Y = 1

yii = q

Y � 0

If we instead use the spectral relaxation of P8, we obtain the following,

82

Relaxation 3.4 Relaxing Affinity Clustering with Advice

P11. Normalised Spectral Clustering (Normalised Cut)

min xTL(A)x

s.t.
xTL(ddT)x = 1

This time, we add the redundant constraint xTd = 0, again as the objective is

invariant under translation, and as

L(ddT) = vol(V) D− ddT ,

we get,

P12. Normalised Spectral Clustering (Normalised Cut) II

min xTL(A)x

s.t. xTd = 0

xTDx =
1

vol(V)

This time the Rayleigh-Ritz theorem tells us the solution to P12 is given by

x = D1/2u, where u is the second smallest eigenvector of D−1/2L(A)D−1/2, also

PSD. This is once again simple to calculate using numerical analysis packages.

3.4 Relaxing Affinity Clustering with Advice

In this chapter we are interested in using the relaxations that we have mentioned

to solve the Affinity Clustering with Advice problem, with the restriction of

two clusters. So we will be transforming a combinatorial clustering problem into a

relaxed continuous problem. The main difficulty here is a lack of a clear objective

function.

We are essentially trying to solve two problems simultaneously: a Affinity

Clustering problem (defined on an affinity graph) and Min-2-CC (defined on an

advice graph), as we know that the advice that we have been given is not necessarily

correct, or necessarily even consistent. A common approach is to modify the objec-

83

3.4 Relaxing Affinity Clustering with Advice Relaxation

tive function to respect the advice, however—particularly for the modified version

of Spectral Clustering considered by Kamvar et al. [63]—it is not at all clear

why the particular modification is justified.

If we knew that the advice was correct (we treated the advice as constraints),

then we could use the following ‘subspace trick’ of De Bie, Suykens and De Moor [32]

to restrict our relaxed search to be in a subspace containing only solutions that agree

with the constraints.

3.4.1 The Subspace Trick

The subspace trick of De Bie, Suykens and De Moor [32] gives a method for incor-

porating consistent advice into spectral and SDP relaxations of Normalised Cut.

As an example, consider spectral clustering and suppose we have two ‘blocks’ of

independent advice. Suppose we think that two vertices, say v1 and v2, should be

in the same cluster and both should be in a different cluster to v3. Additionally,

maybe we think that vertices v4 and v5 should be in the same cluster.

Considering this advice, we could pass this advice in the form of a constraint

to our relaxed problem, by requiring the solution vector x to have x1 = x2 and

x4 = x5—guaranteeing that these pairs of vertices end up in the same cluster after

rounding. It also makes sense to constrain x so that x3 = −x2 = −x1. This can be

done by assuming x (our solution vector) has the form

x =

1 0 0

1 0 0

−1 0 0

0 1 0

0 1 0

0 0 In−5

z

where z ∈ Rn−3. We have a large identity matrix corresponding to the vertices of

which we have no advice. So we can rephrase the spectral clustering problem in

terms of z and ensure that the advice holds. We defer the details of this process to

Section 3.6.3.

This technique leaves the spectral algorithm essentially unchanged; it now just

84

Relaxation 3.4 Relaxing Affinity Clustering with Advice

1 2

3

1.0

0.11.0

(a) Normalised Cut prob-
lem

1 2

3

+

− +

(b) Correlation Clus-
tering problem

Figure 3.1: A problem for which not all optimal solutions to Min-2-CC are optimal
for the accompanying Normalised Cut problem.

searches for eigenvectors in a different subspace. However it is not necessarily ap-

parent from their work how to extend this technique to inconsistent advice. This is

the key issue addressed in this chapter.

3.4.2 Addressing Inconsistency

So how can we apply the subspace trick when the advice we have is no longer

consistent?

As a first approach (Naive), we could simply try to solve the Min-2-CC problem

defined by the advice, and reject advice that this solution fails to respect. A good

solution to Min-2-CC will ensure that we minimise the number of such edges that

we will have to ignore. Then the advice that remains will be consistent, and we can

then use the subspace trick. Or indeed, we could use any other constraint-based

clustering algorithm in this way.

However, this idea has some problems. A toy example of inconsistent advice is

shown in Figure 3.1. We can see that deleting any one of the three edges will result

in an optimal solution to the Min-2-CC problem, leading the the three solutions

{{1, 2, 3}, ∅}, {{1}, {2,3}} and {{1,2}, {3}}. However, one specific cut (namely

separating vertex 3 from vertices 1 and 2) has a much better Normalised Cut

cost. So, in forcing a particular optimal solution to Min-2-CC, we are constraining

our Normalised Cut solution too much.

85

3.5 Relaxations of Correlation Clustering. Relaxation

A second approach (Cost-Constrained) that solves this problem is to cal-

culate the cost of an approximately optimal solution to Min-2-CC. Rather than

force our Normalised Cut solution to be consistent with this Min-2-CC solu-

tion, instead we simply require that our Normalised Cut solution has the same

correlation clustering cost. This approach will give the Normalised Cut side of

our algorithm some room to move, avoiding situations like Figure 3.1. This tech-

nique will be outlined in Section 3.6.1.

A third approach (Cost-Bounded) is to allow the algorithm to differ from the

optimum Correlation Clustering cost, but only by some a given factor. So

now the Normalised Cut side of the problem has some breathing space in which

to find a good solution, whilst we are still forcing a very good solution to Min-2-CC.

This approach is developed in Section 3.6.2.

3.5 Relaxations of Correlation Clustering.

In this section we will consider the Correlation Clustering problem (specifi-

cally Min-2-CC) in the context of relaxations. This will allow us to relax Corre-

lation Clustering to continuous versions analogous to the SDP and Spectral

Clustering solutions to the Affinity Clustering problems (P7 and P10, and

P9 and P12), which will allow us to combine the two problems in a sensible way.

3.5.1 Min-2-CC — the Combinatorial Problem

In general, unlike the affinity graph, the advice graph is not connected. So we can

solve Correlation Clustering independently on each connected component.

We call the vertices in a connected component an advice block. We assume without

loss of generality that the order on the vertices ensures that the vertices within each

block are consecutive. Here we will deal with the problem of solving Min-2-CC for

a single advice block B with m vertices. In later sections, we will consider multiple

advice blocks.

Again, we assign xi = ±1 to each vertex depending on the cluster in which we

place that vertex. For convenience, let Eij be the matrix with a 1 in the (i, j) entry

and zeros everywhere else.

86

Relaxation 3.5 Relaxations of Correlation Clustering.

Our immediate aim is to find, in terms of x, a simple expression for the number

of constraints violated by the labelling. Consider a single edge e = {i, j} of B with

label l(e). Define

Me = (Eii + Ejj)− l(e)(Eij + Eji)

and note that Me � 0 because its eigenvalues are 0 and 2. Now

xTMex = x2
i − 2l(e)xixj + x2

j

= |xi − l(e)xj|2

=

0 if x respects the advice on e

4 otherwise.

So if we define MB =
∑

e Me it follows that

xTMBx = 4× (# pieces of advice violated by x).

Thus Min-2-CC is essentially

min
x∈{−1,1}m

xTMBx . (3.16)

Note that a clustering that satisfies all the advice in a block will have cost zero.

Also observe that xTx = m is a constant so we could replace the objective function

with (xTMBx)/(xTx) without changing the optimum vector.

3.5.2 Relaxations of Min-2-CC

Recall that our overall aim is to constrain any algorithm we have for (approximately)

solving Normalised Cut to produce clusterings which are, in terms of Min-2-CC

cost, not much worse than the optimum.

Since we cannot hope to solve (3.16) exactly, we will instead solve a relaxed

version of it. We consider two relaxations which arise in much the same way as the

spectral and SDP relaxations of Normalised Cut.

87

3.6 Affinity Clustering with Advice Relaxation

P13. Spectral relaxation of correlation clustering

min
x∈Rn

xTMBx

xTx

Observe that the solution of P13 is given by any non-zero vector in the λmin-

eigenspace of MB.

P14. SDP relaxation of correlation clustering

min
Y

MB •Y

s.t. ∀ i ∈ [m] yii = 1 (3.17)

Y � 0

For either relaxation, if the advice is consistent, the relaxation produces a solution

of the same cost (zero) as the optimal solution to the combinatorial problem (3.16).

This is because any solution of the original problem is a feasible point of the relaxed

problem, and the relaxed problem has non-negative cost as MB � 0.

3.6 Affinity Clustering with Advice

In this section, we give the details of Cost-Constrained and Cost-Bounded,

introduced in Section 3.4.2, for both the spectral and SDP relaxations of Nor-

malised Cut.

Throughout, let B1, . . . ,Bp be the advice blocks of the advice graph. Let xB

denote the projection of x onto the co-ordinates involved in advice block B. Along

similar lines, if zB is a vector of length |B| ≤ n associated with the advice block

B, define z̃B to be the length-n vector that agrees with zB in the appropriate co-

ordinates and has zeros elsewhere. For a |B| × |B| matrix MB we also define M̃B in

a similar fashion.

3.6.1 Cost-Constrained

Let optj denote the optimum cost of the SDP relaxation of Min-2-CC (P14) for

block j. For the SDP relaxation, we can add the constraint that for each advice

88

Relaxation 3.6 Affinity Clustering with Advice

block, the Min-2-CC cost of point Y is at most q · optj. (The scaling by q is

necessary because in P14 the variables satisfy yii = 1 whereas in P10 the variables

satisfy yii = q.) This forces the new SDP (P15) only to consider points of minimum

SDP-relaxed Min-2-CC cost.

P15. Cost-Constrained(SDP version)

min
Y,q

L(A) •Y

s.t.

L(ddT) •Y = 1

∀i ∈ [n] yii = q

∀j ∈ [p] M̃Bj •Y ≤ q · optj (3.18)

Y � 0

In the spectral case, the analogous step would be to add the following constraints

to the spectral relaxation of Normalised Cut.

∀j ∈ [p]
xBj

TMBj
xBj

xBj
TxBj

≤ λmin(MBj) (3.19)

But doing so would mean the problem would no longer be an eigenvalue problem—

in fact it would be an SDP—which would undermine the main strength of spectral

clustering, its speed.

Luckily, the condition in (3.19) is equivalent to the condition that each xBj
is in

the λmin-eigenspace of MBj , resulting in P16.

P16. Cost-Constrained(spectral version)

min
v

xTL(A)x

xTDx

s.t. dTx = 0 (3.20)

∀j ∈ [p] xBj
∈ λmin-eigenspace of MBj (3.21)

The constraints (3.20) and (3.21) are forcing x to be in some linear subspace of

Rn. So the problem can then be solved using the subspace trick, as we will see in

Section 3.6.3.

89

3.6 Affinity Clustering with Advice Relaxation

3.6.2 Cost-Bounded

The main drawback of Cost-Constrained is that it does not give the algorithm

much freedom to balance the trade-off between the Min-2-CC and the Normalised

Cut problem. If the advice is quite inconsistent, then forcing the algorithm to follow

solutions of a relaxation of Min-2-CC too closely might result in poor performance.

Above, we forced the algorithm to produce a (relaxation of) a clustering whose

cost was at most the minimum cost of the appropriate relaxation of Min-2-CC.

Now we introduce a parameter f ≥ 1 which tells us the factor by which we are

willing to exceed the (relaxed optimal) Min-2-CC cost.

This is straightforward to introduce to the SDP formulation. We simply replace

the constraints (3.19) of P15 with

∀j ∈ [p] M̃Bj •Y ≤ f · q · optj. (3.22)

In the spectral formulation, the constraints we actually want to add are

∀j ∈ [p]
xBj

TMBj
xBj

xBj
TxBj

≤ f · λmin(MBj) (3.23)

but, again we cannot add these and still have an eigenvalue problem. Unfortunately

in this case we cannot get a constraint equivalent to (3.23) by the subspace trick.

So, in the interests of producing a practical algorithm, we approximate (3.23) by

∀j ∈ [p] xBj
∈ (≤ f · λmin)-eigenspace of MBj (3.24)

where the (≤ f · λmin)-eigenspace of MBj is the span of all eigenvectors of MBj

with eigenvalue at most f · λmin. If x satisfies (3.24) then it satisfies (3.23), but the

converse does not necessarily hold.

Replacing the constraints in (3.21) of P16 with the constraints in (3.24) gives

our final spectral algorithm for clustering with inconsistent advice. It can again be

solved with the subspace trick, using the techniques outlined in the next section,

because all the constraints simply force x to be in some linear subspace of Rn.

90

Relaxation 3.6 Affinity Clustering with Advice

3.6.3 Combining subspace constraints

In this section we will demonstrate how the subspace trick can be extended to deal

with any subspace, specifically constraints of the form given by (3.20) and (3.21)

or (3.24). These constraints are asking us to find a vector orthogonal to d, whilst

being within a certain subspace generated by particular eigenvectors of MBj .

Definition 13. The range of a n×m matrix A, Range(X), is the subspace of Rn

consisting of all vectors x such that x = Ay for y ∈ Rm.

The nullspace of a n×m matrix A, Null(X), is the subspace of Rm consisting

of all vectors x such that Ax = 0.

Let WBj be a matrix whose columns are a basis for the (≤ f ·λmin)-eigenspace of

MBj . Then the Cost-Bounded version of P16 can be written as follows (Cost-

Constrained simply sets f = 1):

P17. Spectral clustering with inconsistent advice

min
x

xTL(A)x

s.t.
xTDx = 1

x ∈ Null(dT) (3.25)

∀j ∈ [p] xBj
∈ Range(WBj

) (3.26)

Let

W =

WB1 · · · 0 0

0 · · · 0 0
...

. . .
...

...

0 · · · WBp 0

0 · · · 0 I

,

where the dimension of I is the number of vertices not involved in any advice. Then

we can replace the constraints (3.25) and (3.26) with

x ∈ Null(dT) ∩Range(W) = S ⊆ Rn

Suppose Z is a matrix satisfying Range(Z) = S and ZTDZ = I. Then if we let

91

3.6 Affinity Clustering with Advice Relaxation

x = Z z, for some z, it is clear that x ∈ S, and P17 becomes

min (zT ZT)L(A)(Z z) s.t. zTz = 1 (3.27)

A solution of (3.27) is given by taking z to be an unit-eigenvector corresponding to

the smallest eigenvalue of ZTL(A)Z. The solution to the original problem is then

x = Z z.

Generating Z We can calculate Z as follows:

1. Let R be a matrix whose columns are an orthonormal basis for Range(W)

with respect to the inner product 〈x,y〉D = yTD x

2. Let N be a matrix whose columns are an orthonormal basis for Null(dTR)

with respect to the inner product 〈x,y〉 = yTx.

3. Set Z = RN.

Remark 3. The matrix Z, as specified above, satisfies Range(Z) = Null(dT) ∩
Range(W) and ZTDZ = I.

Proof. Let x = Z z be in the range of Z. Then x = RN z, so x is a linear combination

of the columns of R. As the columns of R are an orthonormal basis for Range(W),

it follows that x ∈ Range(W). Consider dTx. By the definition of N,

dTx = dTRN z = 0 .

Conversely, let x ∈ Null(dT) ∩ Range(W). Then, as Range(R) = Range(W),

there is a r such that x = R r. Also dTx = 0. Combining the two, we get:

dTR r = 0 .

So r ∈ Null(dTR). So there is a z such that r = N z. But then x = R r = RN z,

and thus x ∈ Range(Z).

Finally, the orthogonality of the columns of R mean that RTDR = I. Similarly,

NTN = I, giving

ZTDZ = NTRTDRN = NT IN = I

92

Relaxation 3.7 Experimental Investigations

3.7 Experimental Investigations

3.7.1 Experiment Setup

In order to test the performance of the algorithms on realistic datasets, we used six

of the UCI repository datasets [10]. All datasets are multi-dimensional binary clas-

sification problems. So they represent a task of classifying a set of high-dimensional

data to agree with an existing classification.

Both datasets were stripped of incomplete records, and in one case (the Spam-

base dataset), sampled down to 500 datapoints. In each case, the two underlying

clusters were of different sizes, which contributed to the mediocre performance of

the pure spectral algorithm. This gives us reason to believe that adding advice will

help the situation.

For reasons of speed, our experiments primarily use the spectral version of each

of the algorithms. Relaxed solutions are rounded to clusterings by cutting at zero.

This ensures that advice respected in the relaxed solution is respected in the final

clustering.

All experiments were run on a 2 GHz Intel Core 2 Duo machine with 2GB of

RAM, running MAC OS X. All algorithms were run in Matlab 7.4.0.

Advice We generated two different ‘types’ of synthetic advice for these problems

to learn how the algorithms perform. The first we call Dense, which involves

around n pieces of advice. We concentrated advice within 5 separate groups of 20

datapoints. This simulates a few sets of experiments done on some small subset

of the total dataspace. Each piece of advice agrees with the actual classification,

independently, with some probability p.

The second type of advice is the Complete case—here we are simulating pair-

wise comparisons that are relatively cheap, but quite noisy. So we generate a piece

of advice for each pair of datapoints, and thus our advice graph is complete.

Min-2-CC Algorithms In order to test Naive, we need to solve Min-2-CC

on each advice block. In the Dense case, we use a tight, strongly performing

SDP relaxation [1]. In the complete case, we use Pick-a-Vertex, the simple 3-

approximation algorithm of Bansal, Blum and Chalwa [12] followed by an application

93

3.7 Experimental Investigations Relaxation

1 2 3 4 5 6 7 8 9 10
0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

f value
A

cc
ur

ac
y

Figure 3.2: Heart Disease dataset, Dense advice, p = 0.75. The unbroken
line is the baseline no advice accuracy; the dashed line is the correlation clustering
based algorithm (Naive). Note that a naive algorithm can easily achieve a baseline
accuracy of 0.54 for this dataset.

of Tosses (our local-search algorithm of Chapter 4, where we develop the PASTA-

toss algorithm, along with other better algorithms for this part of the problem).

For each advice type on each dataset, we ran spectral clustering with no advice

(as a baseline), Naive (as a second baseline), and then spectral clustering with

every different meaningful f value from 1 upwards. This means every increment

in f added one additional eigenvector to a single block, until all eigenvectors were

added (which is exactly the same as the no advice case).

Accuracy The metric that we use to measure the effectiveness of each variant of

our algorithm is accuracy—that is the proportion of points that are placed into the

correct cluster. This means that the lowest possible value obtainable is 0.5. We

note that a naive algorithm which simply places all points in one cluster will achieve

an accuracy equal to the probability of any point being in the larger cluster. We

indicate this baseline accuracy for each dataset.

3.7.2 Results

Dense advice Figure 3.2 displays the results of the Dense advice problem on

the Heart Disease dataset with p = 0.75. We can see that the advice here is suf-

ficiently inconsistent that algorithms which follow it closely (i.e. Naive and Cost-

94

Relaxation 3.7 Experimental Investigations

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

f value

A
cc

ur
ac

y

Figure 3.3: Spambase dataset, Dense Advice, p = 0.75. Note that a naive algo-
rithm can easily achieve a baseline accuracy of 0.59 for this dataset.

1 2 3 4 5 6 7
0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

f value

A
cc

ur
ac

y

Figure 3.4: Spambase dataset, Dense advice, p = 0.65.

95

3.7 Experimental Investigations Relaxation

0 5 10 15 20 25
0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

f value
A

cc
ur

ac
y

Figure 3.5: Hepatitis dataset, Dense advice, p = 0.6. Note that a naive algorithm
can easily achieve a baseline accuracy of 0.84 for this dataset.

Constrained) perform far worse than the algorithm that ignores it completely

(that is, spectral alone). But we can see that by increasing f and striking a balance

between ignoring advice and respecting it too strongly, we can achieve results that

outperform either extreme. We also note that two other datasets, Congressional

Voting Records and Australian, perform similarly.

Figure 3.3 shows the results of running very similar advice (again p = 0.75)

on the Spambase dataset. Here we can see that algorithms that strictly follow

the advice outperform algorithms that ignore it, quite significantly. It is perhaps

unsurprising that when we allow the algorithm more and more freedom to ignore

the advice we move toward the baseline no-advice score. This highlights the fact

that these algorithms are not always of use—there needs to be enough inaccuracy

in the advice that attempting to follow it is not a great idea.

However, if we lower p to be 0.65, the situation changes, as demonstrated by

Figure 3.4. Here as for the Heart Disease case, using only the Min-2-CC so-

lution is worse than using no advice at all, and for a large range of f values, the

compromise of using some advice is better than either extreme. The Haberman

dataset performs similarly; the difference in this case is that for high f values, very

poor performance is exhibited (see below).

Finally, we consider the Hepatitis dataset (Figure 3.5). Here we see new be-

haviour, as our algorithms only begin to perform well for high f values. Note as well

that for this dataset, no algorithm performs well—a naive algorithm which clusters

96

Relaxation 3.7 Experimental Investigations

1 1.05 1.1 1.15 1.2 1.25
0.45

0.5

0.55

0.6

0.65

0.7

0.75

f value
A

cc
ur

ac
y

Figure 3.6: Heart Disease dataset, Complete advice, p = 0.53

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

f value

A
cc

ur
ac

y

Figure 3.7: Spambase dataset, Complete advice, p = 0.53

all points in a single cluster will greatly outperform all of our algorithms. It seems

that this problem is not a good candidate for a constrained clustering algorithm.

Complete Advice Figures 3.6 and 3.7 show the results of the experiments on the

two datasets with Complete advice. We first notice that in order to get meaningful

experiments, we needed to set p extra-ordinarily low—all the way down to p = 0.53.

If p is much higher than this, advice is sufficiently strong that incorrect edges will be

vastly overshadowed by correct ones, and simply solving Min-2-CC on the instance

will give 100% accuracy.

However, with p = 0.53 (and the problem interesting), we can see that the

situation is similar to the Dense case. Again, when f is low, we start at the

97

3.8 Conclusion Relaxation

Min-2-CC-baseline, and as f increases we move towards and above the no-advice

baseline. An interesting point is that the Min-2-CC baseline is around 0.5 in both

experiments, which is an extremely low score. The advice alone is useless for solving

the problem, yet it is still a useful addendum for the spectral method.

As we saw in the Dense case, one interesting difference between the two datasets

is the way the performance drops off as f increases. For Heart Disease, the

performance seems to asymptote to the no-advice case as we increase f (as we would

expect). However, in each case for the Spambase data, there is a huge drop-off in

performance for high-end f values. We have no explanation for this phenomenon.

3.8 Conclusion

In this chapter, we have seen a new algorithm that uses inconsistent advice in

spectral clustering. The technique of transforming advice from a Min-2-CC problem

into a series of relaxed subspaces to constrain a Spectral Clustering or SDP

algorithm was justified in terms of the degree to which we believe inconsistent advice.

The algorithm that we generate was—in the spectral case—efficient, and as we have

seen, more effective than approaches that use either the advice or the affinity data

alone.

98

Chapter 4

Local Search

4.1 Introduction

In this chapter we will explore the intersection of the theoretical and practical ap-

proaches to solving graph optimisation problems. We will apply these ideas to the

Min Feedback Arc Set (Min-FAS) and Min 2-Correlation Clustering

(Min-2-CC) problems. These two problems share many characteristics, and can

be approached in a somewhat similar fashion. In fact, we will find in this chapter

that the best approach to take when solving each problem is local-search. This is

a algorithmic technique based on repeatedly improving a solution until no further

improvement is possible.

Apart from the obvious similarly between Min-FAS and Min-2-CC as simple

graph-based minimisation problems, there are further connections that we will ex-

ploit in this chapter. Each problem has been studied in their its right for many years;

a variety of algorithms have been introduced, especially in the case of Min-FAS.

This problem in particular has seen a significant amount of practical investigation,

resulting in some interesting heuristic algorithms.

Although we will have most success with relatively simple local-search algorithms

for both problems, the problems share mathematical properties that inspire an in-

teresting set of algorithms. This is due to the fact that the difficulties involved

in both problems are related to cycles within the graphs. This insight leads us to

the development of cycle-destroying algorithms for both problems, a new type of

99

4.1 Introduction Local Search

algorithm, with connections to local-search techniques.

4.1.1 Local Search

Often, after running (our favourite) algorithm for a problem, we may be presented

with a solution, which, after some small minor modification, can be improved

slightly. For instance, a vertex may be swapped between clusters, or a pair of

vertices could have their positions in the ranking changed, either of which could

lead to a slightly improved solution to their respective problems.

Such an improvement is often called a local improvement as it doesn’t involve

changing anything fundamental or global about the problem, just making some local

modification. By repeatedly applying this idea, we obtain a local-search algorithm,

starting from some given (often random) solution, it continually makes such local

improvements, until no further improvement is possible. Let us be precise.

Algorithm: Local Search (minimisation)

Given some neighbourhood function over the solutions to a problem P :

N : I × S(I)→ Pow(S(I))

(Here N (I, S) ⊆ S(I) is a set of solutions which are ‘neighbours’ of S).

Then we can define a Local Search algorithm as follows:

For an instance I, beginning at some solution S0 ∈ S(I), perform the

following procedure:

1. Let S ← S0.

2. Choose an S ′ ∈ N (I, S) that minimises P(I, S ′).

3. If P(I, S ′) < P(I, S), let S ← S ′, go to step 2.

4. Otherwise return S.

The selection of S ′ in step 2, and the check made in step 3, as defined here, are

very specific. We could instead make much more complicated decisions and checks,

leading to the entire field of metaheuristics, such as Simulated Annealing and Tabu

100

Local Search 4.1 Introduction

Cost of Solution

Solution Space

Global Minimum

Local Minimum

Figure 4.1: A diagram illustrating the problem with Local Search algorithms.

Search. However, in this thesis, for our local-search algorithms, we will always

choose in step 2 a neighbour which minimises the objective function. Additionally,

we will only change our solution if it strictly improves on the current solution. This

approach is commonly known as hill climbing, but henceforth we will refer to it

simply as Local Search.

Obviously, the behaviour of the algorithm very much depends on the choice of N
and S0. Usually we let S0 be a random configuration. However, the main deficiency

with every local-search algorithm is the same, no matter what choices of N is made:

being stuck in a local optimum.

Figure 4.1 represents a simplified local-search algorithm, where the neighbour-

hood function N presents the algorithm with two choices (‘move left’ or ‘move

right’). We can see that, as the local-search algorithm moves the solution left and

right, it is possible that it could get stuck in the local minimum on the right hand

side. This is a solution of far greater cost than the global minimum. However, as

the local-search algorithm is only looking in a small, local area around the current

solution, it is not able to notice that there are far better solutions available.

For this reason, it is often very hard to provide guarantees about the behaviour of

local-search algorithms. However, there have been some examples of proven results

for Local Search algorithms. Arya et al. [8] were able to show that a simple

swapping algorithm (the same as our Tosses algorithm of Section 4.3.1) is a 5-

approximation for the k-median problem; if in fact we allow up to p simultaneous

101

4.1 Introduction Local Search

moves, a 3 + 2/p-approximation is obtained. Kanungo et al. [64] demonstrate a

similar algorithm is a 9-approximation for the k-means problem. Approximation

results for such simple algorithms are very encouraging. However, we will see that

the Tosses algorithm for Min-2-CC (and similar algorithms for Min-FAS) is not

a constant-factor approximation algorithm.

Local-search algorithms are often used in practice, as they are often very fast

and sometimes quite effective. Additionally, with random starting positions, they

can be run multiple times to improve on the quality of results. More interesting is

the possibility of using a local-search algorithm as an addendum to another, more

complicated algorithm. Such a combination will have the approximation guarantees

of the original algorithm, along with the practical performance of the local-search

algorithm (although if the theoretical algorithm has a high running time, we do not

gain the local-search algorithm’s small running time).

In the rare case that a local-search algorithm has an approximation guarantee, we

can add it as an addendum to a practical algorithm to achieve a performance guar-

antee, without adversely affecting the performance (and in most cases the running

time).

4.1.2 Problem Instances

As we have seen in Section 2.3.4, the Min-FAS problem has been studied in the

context of a number of applications. For these applications, the problem instantiates

as many different types of digraphs. Similarly, practical applications of Min-2-CC

generate a wide variety of signed graphs.

However, as outlined in Section 2.3.4, there as has been a flurry of activity in the

approximation algorithms community recently with regards to tournament graphs

(complete digraphs). The reason for this narrower focus is twofold. Firstly, the

more regular, complete structure of a tournament encourages mathematical proofs.

Secondly, one major class of applications of Min-FAS—those that are based on

Rank Aggregation problems—generate tournament graph instances.

As we saw in Section 2.2.4, Min-2-CC has received limited attention from the

computer science community, despite marked similarities to the Min Feedback

Arc Set and Max-Cut problems. However, the few theoretical results that do

102

Local Search 4.1 Introduction

exist are also restricted to complete signed graphs, for similar reasons.

In this chapter, we are interested in marrying the work done in both spheres of

endeavour, and trying to find which algorithms are truly ‘best’ for this problem. For

this reason, we will mainly focus on complete graphs, as this is the type of problem

for which most theoretical algorithms have been designed—it would hardly be a fair

comparison otherwise.

4.1.3 Aims of this Chapter

The aim of this chapter is to discover which algorithms are most effective for the

Min Feedback Arc Set and Min 2-Correlation Clustering problems, both

from a practical as well as (where possible) a theoretical perspective.

In Section 4.2.1, we describe a series of algorithms that we develop for the Min-

FAS problem, beginning with some very simple examples of Local Search algo-

rithms, leading up to complex algorithms based on the idea of destroying directed tri-

angles in tournament graphs. In Section 4.2.2 we will experimentally compare those

algorithms with the existing algorithms for the Min-FAS problem, as described in

Section 2.3.4. We conduct a thorough investigation, using both synthetic and non-

synthetic datasets, in order to firmly establish the practicality of each algorithm.

We complement that experimental work with some counter-examples demonstrat-

ing that many of the algorithms mentioned are not constant-factor approximation

algorithms.

In Section 4.3.1, we describe another set of algorithms, for the Min-2-CC prob-

lems, with similarities to the algorithms described above. In addition to examples of

Local Search, and a cycle-destroying algorithm (inspired by the directed trian-

gle destroying algorithm), we also describe an algorithm, PASTA-toss, that uses

the local-search step in combination with an algorithm improving on the Pick-

a-Vertex algorithm of Bansal et al. [12]. Again, in Section 4.3.2, we perform an

experimental investigation into which algorithm is practically most effective, on both

synthetic and real-world datasets.

Finally, in Section 4.3.3, we provide a proof that the PASTA-toss algorithm is

a 2-approximation on complete graphs, along with counter-examples that show its

constituent algorithms are not constant-factor approximators.

103

4.2 Min Feedback Arc Set Local Search

4.2 Min Feedback Arc Set

4.2.1 The Algorithms

Local-Search Algorithms

As we mentioned in Section 4.1.1, local-search is a well know heuristic to solve

optimisation problems. To define a local-search algorithm, we need to define the

neighbourhood relationship—a method of generating neighbouring solutions from

any specific potential solution. We can then make a choice of which of those neigh-

bours to move to in each step of the Local Search algorithm.

The neighbourhoods we will consider in this thesis are very simple. In the case

of Min-FAS, they involve making one simple improvement to a solution. We define

two neighbour functions, which lead to two Local Search algorithms.

• The Swaps heuristic:

The neighbourhood N (π) of a ranking π is all rankings which can

be obtained from π by swapping the position of two vertices.

• The Moves heuristic:

The neighbourhood N (π) of a ranking π is all rankings which can be

obtained from π by moving one vertex to another position, leaving

the relative order of all other vertices unchanged.

The Swaps algorithm runs in worst-case time O(n3) and the Moves algorithm

in O(n4), although on average (as most local search algorithms do), perform much

better. The two steps are demonstrated in Figure 4.2. We will show that neither

algorithm can provide an approximation guarantee. On preliminary tests, we found

that the Moves heuristic performed well, but that Swaps did not; the latter was

omitted from further experiments.

The Chanas algorithm An application of the SORT step of the Chanas algo-

rithm [19] (see Section 2.3.4) has the effect of checking, for each vertex of the graph,

from left to right, if a Moves-style step, where the move is to the left, is possible.

104

Local Search 4.2 Min Feedback Arc Set

swap

move

Original Position Local Improvement

Figure 4.2: The two local-search steps that we consider in this chapter.

This is essentially a scheme for selecting which Moves-style changes to make, as

opposed to the gradient descent approach that we had decided upon. The operation

SORT ◦ REVERSE does the same thing, but with moves to the right. So Chanas

is simply a method for investigating Moves in a particular order. We developed

an variant of this, which we call Chanas Both, and which runs in similar time

(O(n4)):

Algorithm: Chanas Both

Run Chanas, but change the SORT procedure, so we are allowed to

move a node either left or right, to the position that results in the fewest

back-arcs.

A consequence of this modification is that some nodes may be moved more than

once in a single SORT pass.

Note that the Bubblesort algorithm, also described in Section 2.3.4, is a variant

of Swaps. It considers swapping adjacent vertices in a very specific order.

Triangle-Destroying Algorithms

A mentioned in Section 2.1, a tournament has a cycle if and only if it has a directed

triangle (which we denote by ~4). This is due to the complete nature of a tournament

105

4.2 Min Feedback Arc Set Local Search

graph—every (non-~4) cycle must have a chord inside it that forms a strictly smaller

cycle. (see Figure 2.6). This of course means that if we can remove all the ~4s from

a tournament, we will have an acyclic tournament, which can be ranked easily.

We therefore consider algorithms that destroy directed triangles by selecting

arcs to reverse. It might seem more natural to delete arcs, but this would make

the digraph no longer a tournament, creating the possibility of cycles without the

presence of ~4s. Our scheme works in the following way:

Algorithm: Triangle Deletion

While the tournament is not acyclic, choose an arc and reverse its ori-

entation. Once the tournament is acyclic, use the Topological Sort

of the vertices as the solution to the original problem.

The choice of arc to be reversed affects the performance and running time of this

procedure; the remainder of this section examines various heuristics. Figure 4.3

demonstrates the operation of a Triangle Deletion algorithm.

We call the number of ~4s an arc is involved in its triangle count. The triangle

count of a tournament is simply the number of ~4s in that tournament—as each ~4
contains three arcs, the tournament has a triangle count equal to the one-third of

the collective sum of the triangle count of its arcs. Our first algorithm is:

Algorithm: Triangle Count

Run Triangle Deletion, choosing on each iteration the arc with high-

est triangle count.

There is a pitfall here though: reversing an arc can create a new ~4 that did not

previously exist. In Figure 4.4 we see that reversing the center arc does not actually

reduce the triangle count of the graph, as a single triangle is destroyed and new

triangle is created. The problem here is really the length-4 cycle surrounding the

arc, and the solution is to reverse one of these outer arcs (one of which in fact

has triangle count two). So the worst case running time of Triangle Count is

unbounded.

However there are (more complex) examples where reversing the arc with the

highest triangle count creates the same number of triangles as it destroys. So that

106

Local Search 4.2 Min Feedback Arc Set

1

2

4

5
3

1 2 3 4 5

Reverse arc

1
4

1

2

4

5
3

TC: 2, TD: 2, DD: 1

2

5

Reverse arc

TC: 2, TD: 2, DD: 1

1

2

4

5
3

Tournament is acyclic, leading to ordering
(with original arc orientations):

Figure 4.3: An example of an Triangle Deletion algorithm in action. TC refers
to the triangle count, TD to the triangle delta, and DD to the degree difference,
as explained below. The arcs chosen could be chosen by any of our Triangle
Deletion algorithms. We re-arrange the tournament so that it becomes acyclic;
we can then order it easily, however the arcs that we have reversed are now back-arcs.

107

4.2 Min Feedback Arc Set Local Search

e flipping e
e

Figure 4.4: An example where reversing creates a triangle whilst destroying another.

arc still has the highest triangle count, leading to an infinite loop.

To avoid this problem, we define the following algorithm:

Algorithm: Triangle Delta

Run Triangle Deletion, choosing the arc which causes the greatest

net reduction to the tournament’s triangle count.

A potential problem with Triangle Delta could be the existence of a tournament

that was not acyclic (and thus still had ~4s, and thus a positive triangle count), yet

contained no arcs whose reversal would lower the triangle count. Lemma 1 proves

that this situation is impossible.

Lemma 1. Let T be a tournament. If T has a cycle, then there exists an arc e ∈ T
such that reversing e will reduce the triangle count of T .

Proof. Let σ be an ordering of the vertices of T that induces a minimum feedback

arc set. Let a = v ← w be a back-arc of maximal length under σ, that is maximising

σ(w)− σ(v). We claim that reversing a will lower the triangle count.

Firstly, we note that reversing a will not create any ~4s of the form v-w-x, where

x is to the right of both v and w, as this would imply a back-arc v ← x that is

‘longer’ than v ← w; this is impossible by our choice of a. Similarly, no ~4 x-v-w

can be created where x is to the left of both vertices. So any ~4 created must involve

an x between v and w.

Consider the four possibilities for a node x that is placed between v and w by σ:

1. v xoo woo

a

xx
(reversing a will create a ~4). Say there are A such xs.

2. v // x // w

a

xx
(reversing a will delete a ~4). B of these.

108

Local Search 4.2 Min Feedback Arc Set

3. v // x woo

a

xx
(reversing a will have no effect). C of these.

4. v xoo // w

a

xx
(no effect). D of these.

Since σ is optimal, moving v to the position after w will not reduce the back-arc

count. So the number of back-arcs into v from such x’s must be less than the number

of forward arcs from v to such x’s (strictly, as there is a back-arc from w to v). So

we have

A+D < B + C .

Similarly, moving w before v will not improve the order, so we have

A+ C < B +D .

Combining these gives

2A+D + C < 2B + C +D =⇒ A < B ,

and therefore the number of ~4s will decrease.

As there are up-to O(n3) triangles on a graph, a Triangle Delta algorithm

will take time O(n5), although, like most local search algorithms, will tend to do

much better, as many triangles will be deleted in each step.

In practice, contrary to our expectations, the Triangle Count algorithm

tended to outperform the Triangle Delta algorithm (except of course in the

cases when it did not complete execution). So we considered a third option, taking

the best of both approaches, again running in O(n5):

Algorithm: Triangle Both

Run Triangle Deletion, choosing the arc with the highest triangle

count, provided that it reduces the tournament’s total number of ~4s.

Note that the best algorithm we have for calculating the triangle count, and the

change in ~4s, for every arc of the digraph requires O(n3) operations. It seems

unlikely that this can be improved as there are potentially O(n3) such ~4s.

109

4.2 Min Feedback Arc Set Local Search

In a weighted tournament, the weight of a ~4 is the sum of the weights of its arcs.

Therefore in such graphs, the triangle count of an arc is the sum of the weights of

the ~4s it is involved in.

Degree Difference Algorithms

We designed a new algorithm, Degree Difference, which is again a triangle-

deletion algorithm, but which selects an arc to reverse based on a criterion that is

much simpler to compute than the full triangle count. However, the criterion seems

empirically to be related to the triangle count.

Algorithm: Degree Difference

Run Triangle Deletion, choosing the arc u → v for which the dif-

ference between u’s indegree and v’s indegree is greatest.

Unfortunately, it may take Θ(n) time to find such an arc at each iteration. Neverthe-

less, as we now show, this algorithm always makes progress towards a total ordering.

Whilst the tournament is non-transitive, there must be an arc with non-negative

degree difference. If there were no such arc, the solution returned by Iterated

Kendall would have no back arcs, which is a contradiction, as a perfect solution

implies the digraph is transitive. But the value of
∑

v In(v)2 increases whenever

an arc of non-negative degree difference is reversed, and has a maximum value of∑n−1
i=0 i

2 when the tournament has a total ordering. This means the total number

of steps is O(n2), leading to a O(n3) algorithm. However, this may still lead to a

time-consuming algorithm, due to the time taken to find the arc of highest degree

difference.

In an effort to further speed up the Degree Difference algorithm, we used

a sampling technique. We sample log n vertices (favouring high indegree) to poten-

tially be the ‘tail’ of the arc, and another log n (favouring low indegree) to potentially

be the ‘head’. We then check each of the log2 n arcs between sampled vertices, choos-

ing the back-arc of highest degree difference. We resample if we find back-arcs only

of non-positive degree difference. This algorithm is called Degree Difference

Sampled 1, and it takes O(n2 log2 n) time on average.

A further variation, Degree Difference Sampled 2, maintains two lists: one

110

Local Search 4.2 Min Feedback Arc Set

1

2

4

5
3

s:

1

2

4

1

4

3

2

5
3

2

4

5

Figure 4.5: An example of the calculations of the various Triangle Deletion
algorithms. This tournament contains four directed triangles. The arcs 4 → 1
and 5 → 2 have triangle count and triangle delta scores of two, the highest on the
tournament. Additionally, they have degree difference 1. Vertices 4 and 5, with high
indegree, are good candidates for tails, likewise 1 and 2 are good head candidates.
Each algorithm will consider them good arcs to reverse. Note that for instance the
arc 1 → 5 has triangle count zero, and triangle delta −1, due to the potential ~4
1→ 3→ 5→ 1, and has degree difference −2. This is a poor arc to reverse.

of potential head nodes, and one of potential tail nodes. The idea is to try to push

the quantity
∑

v In(v)2 towards its maximum—which is reached when all indegrees

are different, and the graph is thus transitive. With this in mind, remembering that

reversing an arc will increase the indegree of it’s tail and decrease the indegree of

its head, a node v is a potential head if In(v) is not unique or there is no node of

indegree In(v) − 1. Similarly, a node u is a potential tail if In(u) is not unique or

there is no node of indegree In(u) + 1. We maintain lists of both potentiates, and

sample log n nodes from each list uniformly, selecting for the log2 n pairs the arc

with the largest degree difference to reverse. Again, this algorithm will take time

O(n2 log n).

4.2.2 Experiments

We conducted a series of experiments to validate the empirical performance of these

algorithms. All experiments were conducted on a 4-core Intel Xeon 3.2GHz machine,

with 8 gigabytes of physical memory. All algorithms were compiled by gcc version

3.4.6 with the -O3 optimisation flag. Note that in all relevant algorithms we broke

ties randomly.

111

4.2 Min Feedback Arc Set Local Search

Algorithms Tested

Apart from the new algorithms listed above, we also tested the following algorithms,

as described in Section 2.3:

• The Iterated Kendall [38] algorithm (described on Page 62).

• The Eades [39] algorithm (analogous to Selectionsort, Page 63).

• The Chanas [19] algorithm (described on Page 65).

• Our modification Chanas Both, as described above.

• Ailon et al.’s [2] Quicksort algorithm (described on Page 68), along with the

obvious generalisation to Bubblesort and Mergesort.

Note that the PTAS of Kenyon and Schudy [69] was unfortunately too compli-

cated and impractical to implement.

Eades Improved The Eades algorithm focuses on the left side of the ranking.

We improve this by allowing the selection of a vertex to either end of the ranking.

For instance, if there is a vertex v of extremely low outdegree, but no vertex of low

indegree, it makes sense to decide to place v on the right hand side of the ordering,

deferring the more difficult choice on the left.

Remember In(v) is the indegree of node v, and Out(v) its outdegree. Our im-

proved algorithm is (running, as Eades in time O(n2)):

112

Local Search 4.2 Min Feedback Arc Set

Algorithm: Eades Improved

• Choose the vertex m that maximises
∣∣In(u)−Out(u)

∣∣.
• Let π0 = Eades(G|V \{m}).

• If In(m) < Out(m), return

π(v) =

1 if v = m,

π0(v) + 1 otherwise.

• Otherwise, return

π(v) =

n if v = m,

π0(v) otherwise.

In order to investigate the significance of initial solution quality to the effective-

ness of local-search techniques, we first tested each algorithm in isolation—for the

local-search algorithms, this meant starting from a random ordering. Following this,

we then passed the output of each algorithm into both the Chanas and Moves

algorithms.

Note that passing the output of Chanas as input to Chanas is a surprising

case. Chanas is a local-search algorithm—which would imply that as the output of

Chanas is locally optimal, a further call to Chanas would have no further effect.

However, a single call to the SORT* ◦ REVERSE step can significantly change the

ordering without affecting the solution quality. That is, whilst deciding that it is at

a local minimum, the algorithm can take a “sideways step” (one which changes the

ordering, without decreasing the cost). So it is possible that two calls to SORT* ◦
REVERSE can lower the cost of a ranking, whilst one will not. Repeated calls to

Chanas can sometimes move the algorithm out of a local plateau. For this reason,

Chanas + Chanas can sometimes improve on, and also take longer than, Chanas

alone. However, it is difficult to predict when this is going to happen, and so no

systematic method to take advantage of this is apparent.

113

4.2 Min Feedback Arc Set Local Search

Datasets

Biased We tested the Min-FAS algorithms on the following synthetic dataset.

Starting with a total order from nodes 1 to 100, we reverse each arc independently

with probability p. In particular, with p = 0.5, we have a completely random

tournament.

The following datasets provide a set of rankings to be aggregated—the Rank

Aggregation problem on these rankings provides us with a Min-FAS tournament

as described in Section 2.3.3.

WebCommunities Laurence Park provided us with a set of 9 rankings of a large

set of documents (25 million) [89]. From this we took 50 samples of 100 documents

and considered the rankings of each of those subsets.

EachMovie We used the EachMovie collaborative filtering dataset

[79] to generate tournaments of movie rankings. The idea here was to identify

subgroups (we used simple age/sex demographics) of the users, and then generate

tournaments that represented the ‘consensus view’ of those groups.

The EachMovie dataset consists of a vote (on a scale of one to five) by each user

for some set of the movies. To form a tournament from a group we took the union

of movies voted for by that group and then set the arc weight from movie a to movie

b to be the proportion of users who voted a higher than b. For consistency with the

other datasets, we sampled each tournament down to size 100.

Discussion of Results

We tested all of the algorithms on a large number of data sets. We selected just

four of the data sets to display in Table 4.1: these show a variety of performance

characteristics. Listed for each variant is the percentage error, as compared to our

baseline algorithm—Chanas in isolation. Also listed is the percentage of ‘wins’—

that is the number of times the algorithm does the best (of the variant). If k

algorithms each produce the best solution on a given input graph, each is given 1/k

wins. Finally, the total time taken, in seconds, is given.

114

Local Search 4.2 Min Feedback Arc Set

0.6 0.95 WebCommunities EachMovie

Variant Errors Wins Time Errors Wins Time Errors Wins Time Errors Wins Time
— 12.02 0.0 2.1 29.79 0.0 1.9 15.63 0.0 0.1 8.39 0.0 0.3

It. Kend. move 0.35 7.5 4.9 0.30 10.0 3.8 0.00 12.0 0.4 0.31 7.4 0.8
chan -0.35 10.9 6.7 0.00 14.5 4.5 0.00 13.6 0.3 -0.06 7.8 1.0

— 9.88 0.0 4.7 62.02 0.0 4.7 31.38 0.0 0.2 7.47 0.0 0.7
Eades move 0.56 4.0 7.5 0.31 5.5 6.9 0.01 5.3 0.6 0.25 11.5 1.1

chan -0.29 9.6 9.7 0.00 7.3 7.3 -0.00 6.7 0.4 -0.08 8.0 1.4

— 8.65 0.0 1.9 52.10 0.0 1.9 19.29 0.0 0.1 6.37 0.0 0.3
Eades Imp. move 0.60 3.2 4.7 0.32 5.2 4.7 0.00 8.6 0.3 0.37 2.2 0.8

chan -0.20 6.9 6.8 0.00 7.3 4.7 0.00 7.0 0.3 -0.02 6.3 1.0

— 0.00 74.0 5.6 0.00 27.8 2.8 0.00 23.6 0.1 0.00 83.8 0.7
Chanas move -0.01 34.1 7.5 -0.00 12.8 5.3 -0.00 9.4 0.3 -0.03 54.5 1.1

chan -0.04 6.4 7.8 -0.00 7.3 5.5 -0.00 7.0 0.3 -0.04 9.7 1.1

— 35.25 0.0 1.6 728.46 0.0 1.6 74.46 0.0 0.1 31.07 0.0 0.3
Bubble. move 0.75 4.0 4.6 0.21 7.0 3.4 0.00 5.4 0.3 0.33 1.5 0.8

chan -0.02 4.4 7.2 0.00 7.2 3.6 -0.00 8.9 0.3 -0.01 7.8 1.0

— 23.23 0.0 1.6 130.81 0.0 1.6 0.86 1.4 0.1 20.62 0.0 0.3
Merge. move 0.79 2.7 4.6 0.23 6.4 5.2 0.00 6.0 0.2 0.34 3.4 0.8

chan -0.02 5.6 7.2 0.00 7.2 4.5 0.00 6.6 0.3 -0.01 7.4 1.1

— 23.65 0.0 1.6 135.63 0.0 1.6 0.91 1.5 0.1 20.27 0.0 0.3
Quick. move 0.78 3.7 4.6 0.22 6.9 4.4 0.00 6.3 0.2 0.34 1.7 0.8

chan -0.01 4.9 7.1 0.01 7.2 4.5 0.00 6.5 0.2 0.01 8.1 1.0

— 2.12 0.2 345.4 0.06 21.6 208.9 0.01 19.3 2.7 4.42 0.0 52.5
Tri. Both move 0.23 12.4 347.9 0.05 10.4 211.1 0.00 8.7 2.8 0.26 5.5 52.9

chan -0.40 13.4 349.8 0.03 6.8 211.8 -0.00 7.0 2.8 -0.07 10.1 53.2

— 11.24 0.0 9.4 48.05 0.0 4.0 0.42 0.0 0.1 9.65 0.0 1.3
D. D. Sam. 1 move 0.30 9.6 12.2 0.29 5.6 5.8 0.00 7.1 0.3 0.29 2.2 1.8

chan -0.40 11.8 14.0 0.00 7.2 6.1 -0.00 7.5 0.3 -0.05 6.6 2.0

— 10.75 0.0 15.6 99.82 0.0 6.0 0.86 0.0 0.1 9.38 0.0 2.4
D. D. Sam. 2 move 0.33 8.1 18.3 0.27 5.9 8.4 0.00 6.2 0.3 0.32 4.4 2.8

chan -0.37 11.6 20.1 0.00 7.2 8.7 -0.00 7.1 0.3 -0.07 11.1 3.1

— 0.85 11.8 17.6 0.28 12.0 11.5 0.00 25.1 0.7 0.35 8.1 2.6
Moves move 0.85 2.2 19.4 0.28 5.7 14.3 0.00 8.8 0.8 0.35 2.9 2.9

chan -0.07 3.9 21.6 0.03 6.7 14.2 -0.00 7.2 0.8 -0.08 9.6 3.1

— 0.77 14.0 3.0 0.21 14.3 3.6 0.00 18.5 0.2 0.31 8.1 0.5
Chan. Both move 0.77 3.6 4.8 0.21 6.7 5.4 0.00 6.7 0.3 0.31 3.0 0.8

chan -0.09 5.1 7.0 0.03 6.7 5.9 -0.00 7.4 0.3 -0.05 7.5 1.0

Table 4.1: Algorithms were tested on the Biased data set with p = 0.6 and 0.95,
and on the WebCommunities and EachMovie data sets. In addition to the
basic algorithms, we ran Moves and Chanas-style local search procedures on the
outcomes of each. We report the average of the percentage (%) relative difference
between the number of back-edges (Errors), compared to the Chanas heuristic,
over all problem instances in the dataset. We also report the percentage (%) of times
each algorithm wins (produces the best amongst the solutions generated), with the
win split between algorithms that are equal first on a particular instances (Wins).
Time is the average running time (in seconds) of each (combination of) procedure(s).
Note that both Biased datasets had 100 instances, WebCommunities 50, and
EachMovie 146.

115

4.2 Min Feedback Arc Set Local Search

We first note the striking performance of the Chanas local-search procedure,

which is rarely beaten. Despite coming with an approximation guarantee, the

Quicksort procedure performs relatively poorly, as does the Mergesort algo-

rithm. Bubblesort does surprisingly well on the WebCommunities dataset,

although it seems from the results that the WebCommunities dataset is a partic-

ularly simple problem instance. Also, Bubblesort only does well after the Chanas

procedure is applied; otherwise it is possibly the worst of the algorithms. The Eades

and Eades Improved algorithms are strong, but there should be a preference for

the latter due to its lower running time.

As expected, the Triangle Both algorithm is very slow, though it is a strong

performer when combined with local-search. The Degree Difference algorithm

is similar, though at a different point on the effectiveness/speed trade-off. The

sampling methods for Degree Difference—Degree Difference Sampled 1

and Degree Difference Sampled 2—seem better compromises.

The Time-Effectiveness Trade-off

Figures 4.6 to 4.9 highlights the trade-off between speed and efficiency of selected

algorithms. On the Biased (p = 0.6) data set, the two algorithms that cannot be

said to be worse than others (as they are on the efficient frontier) are the hybrid

of Degree Difference Sampled 1 and Chanas, and the hybrid of Iterated

Kendall and Chanas. Chanas by itself, not shown in this picture, unsurprisingly

takes less time than these two algorithms. Chanas Both and Eades deserve

special mention for their performance on the WebCommunities and EachMovie

datasets respectively.

However, in the experiments to follow, we will consider only the Biased dataset.

This is due to the ease of generating many problem instances of differing sizes for that

synthetic dataset. For this reason, in what follows, we will focus our attention on the

three algorithms which perform best on Biased: Chanas, Iterated Kendall

and Degree Difference Sampled 1.

In Figures 4.10(a) and 4.10(b), we test the benefit of multiple runs of a ran-

domised algorithm—to see if there is an effective sacrifice of running time in com-

parison to solution quality.

116

Local Search 4.2 Min Feedback Arc Set

 1743

 1744

 1745

 1746

 1747

 1748

 1749

 1750

 1751

 0 5 10 15 20 25

A
ve

ra
ge

 n
um

be
r

of
 b

ac
k-

ar
cs

Time (in seconds)

Iterated Kendall

Eades

Eades Improved

ChanasQuicksort

Degree Difference Sampled 1

Degree Difference Sampled 2

Moves
Chanas Both

Figure 4.6: The trade-off between amount of time taken compared to the effective-
ness of the various algorithms as inputs to Chanas. A point to the left indicates
reduced running time; further downwards indicates fewer errors in the output rank-
ing. The data shown is from the Biased dataset, p = 0.6, from a run of 1000
instances of size 100. On the efficient frontier (the most valuable algorithms) are
those that have no other algorithm both below and to the left–these include Iter-
ated Kendall, and Degree Difference Sampled 1.

 241.51

 241.52

 241.53

 241.54

 241.55

 241.56

 241.57

 241.58

 241.59

 241.6

 241.61

 2 2.2 2.4 2.6 2.8 3

A
ve

ra
ge

 n
um

be
r

of
 b

ac
k-

ar
cs

Time (in seconds)

Iterated Kendall
EadesEades ImprovedChanas

Quicksort
Degree Difference Sampled 1 Degree Difference Sampled 2

Moves
Chanas Both

Figure 4.7: The same time versus effectiveness trade-off for the Biased dataset,
p = 0.9. Again a run of 1000 instances of size 100. Here Chanas holds a clear
advantage.

117

4.2 Min Feedback Arc Set Local Search

 862.79

 862.792

 862.794

 862.796

 862.798

 862.8

 862.802

 862.804

 862.806

 0.1 0.12 0.14 0.16 0.18 0.2

A
ve

ra
ge

 n
um

be
r

of
 b

ac
k-

ar
cs

Time (in seconds)

Iterated Kendall

Eades

Eades Improved
Chanas

Quicksort

Degree Difference Sampled 1

Degree Difference Sampled 2
Moves

Chanas Both

Figure 4.8: The same time versus effectiveness trade-off for the WebCommunities,
over the 50 problem instances. For this dataset Degree Difference Sampled 1
and Chanas Both are on the frontier.

 1744.8

 1745

 1745.2

 1745.4

 1745.6

 1745.8

 1746

 1746.2

 1746.4

 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 n
um

be
r

of
 b

ac
k-

ar
cs

Time (in seconds)

Iterated Kendall

Eades

Eades Improved

Chanas

Quicksort

Degree Difference Sampled 1

Degree Difference Sampled 2

Moves
Chanas Both

Figure 4.9: The same time versus effectiveness trade-off for the EachMovie, over
the 146 problem instances. Chanas and Eades seem the more effective algorithms
here.

118

Local Search 4.2 Min Feedback Arc Set

 1725

 1730

 1735

 1740

 1745

 1750

 1755

 10 100 1000 10000

A
ve

ra
ge

 n
um

be
r

of
 b

ac
k-

ar
cs

Time (in seconds)

Iterated Kendall
Chanas

Degree Difference Approx

(a) For the Biased dataset, p = 0.6.

 1743

 1744

 1745

 1746

 1747

 1748

 1749

 1750

 1 10 100 1000

A
ve

ra
ge

 n
um

be
r

of
 b

ac
k-

ar
cs

Time (in seconds)

Iterated Kendall
Chanas

Degree Difference Approx

(b) For the EachMovie dataset (146 tournaments of size up to 100)

Figure 4.10: The effect of repeated calls to a hybrid of each algorithm and Chanas.
We ran each algorithm once, twice, four times, etc. up to 256 times. Displayed for
each run is the best-performing output over all repeats.

119

4.2 Min Feedback Arc Set Local Search

Iterated Kendall Chanas Degree Difference Approx
Rep. Time Avg. Best Worst Time Avg. Best Worst Time Avg. Best Worst

1 19.2 1745.11 1745.11 1745.11 20.3 1750.22 1750.22 1750.22 26.3 1744.65 1744.65 1744.65
2 26.5 1745.02 1742.36 1747.68 28.8 1750.54 1745.35 1755.73 40.8 1743.92 1740.38 1747.45
4 40.6 1744.90 1740.22 1749.93 45.2 1750.57 1741.65 1760.51 69.4 1744.23 1738.08 1750.61
8 69.2 1745.08 1738.76 1751.75 78.5 1750.66 1738.87 1764.53 127.0 1744.24 1735.99 1753.47

16 126.5 1745.04 1737.73 1753.11 144.9 1750.53 1736.44 1768.42 242.0 1744.25 1734.30 1755.78
32 240.7 1745.08 1736.76 1754.33 277.4 1750.57 1734.68 1772.00 471.2 1744.25 1732.88 1757.80
64 468.2 1745.06 1736.09 1755.02 542.2 1750.57 1732.97 1775.53 929.8 1744.25 1731.68 1760.13

128 924.3 1745.05 1735.78 1755.53 1071.6 1750.57 1731.80 1778.49 1848.4 1744.24 1730.60 1762.00
256 1837.6 1745.04 1735.48 1755.94 2133.4 1750.55 1730.67 1781.28 3689.8 1744.24 1729.69 1763.69

Table 4.2: The effect of repeated calls to a hybrid of each algorithm and Chanas.
We ran each algorithm multiple times and recorded the total running time as well as
the best, worst and average performance. These results are for the Biased p = 0.6
dataset.

Iterated Kendall Chanas Degree Difference Approx
Rep. Time Avg. Best Worst Time Avg. Best Worst Time Avg. Best Worst

1 3.0 1750.58 1750.58 1750.58 3.1 1750.68 1750.68 1750.68 3.9 1751.39 1751.39 1751.39
2 4.0 1750.60 1750.27 1750.93 4.3 1751.08 1749.53 1752.63 6.1 1750.77 1749.21 1752.34
4 6.1 1750.60 1750.11 1751.12 6.7 1750.82 1747.91 1754.04 10.2 1750.78 1748.13 1753.91
8 10.3 1750.54 1750.02 1751.21 11.7 1751.06 1747.26 1755.91 18.4 1750.78 1747.25 1755.26

16 18.6 1750.56 1749.91 1751.32 21.3 1751.11 1746.62 1758.06 35.0 1750.78 1746.77 1757.19
32 35.7 1750.58 1749.91 1751.38 40.5 1751.03 1746.28 1759.03 68.0 1750.74 1746.08 1758.13
64 69.6 1750.57 1749.88 1751.40 79.0 1751.07 1745.84 1761.29 134.1 1750.73 1745.84 1759.62

128 137.1 1750.59 1749.87 1751.41 156.7 1751.07 1745.59 1762.00 266.4 1750.74 1745.52 1760.30
256 272.8 1750.57 1749.87 1751.41 311.9 1751.09 1745.28 1763.47 531.8 1750.75 1745.31 1762.06

Table 4.3: Similar data to Table 4.2, for the EachMovie dataset.

120

Local Search 4.2 Min Feedback Arc Set

In attempt to give each algorithm an equal amount of time to operate, we repeat

each algorithm twice, four times, eight times, etc. On each run, we execute Chanas

as a finishing step. In Figures 4.10(a) and 4.10(b), we plot the best result found

over the set of repeats, along with the total time taken, in seconds. In Tables 4.2

and 4.3 we display the numerical results, along with the average and worst result

for each set of repeats.

There is a certain random component to all of these algorithms. For Iterated

Kendall, there is less randomness in the algorithm, and this is borne out in the

results. This leads to a relative stagnation in its effectiveness, especially on the

EachMovie data. The hybrid Chanas and Degree Difference Sampled

1 algorithms perform similarly on both datasets, however Degree Difference

Sampled 1 shows some advantage on the Biased dataset, whilst Chanas has a

clear advantage on EachMovie. Naturally, one could run Wilcoxon-style [106] non-

parametric tests to show that one algorithm is significantly better than the other in

a pure statistical sense. However, the difference may not be important, and it can

be hard to compare algorithms that take slightly different running times. We leave

the graphs themselves as the strongest evidence of the similar performance.

Increasing Problem Size

We investigated the running times of the algorithms on larger data sets to infer

something about the running time growth (see Figure 4.11). In the diagram, we

have separated the algorithms into seven classes, each with roughly similar running

times (generally within 10% for each sample). We can see immediately that Trian-

gle Both and Degree Difference have very high running times, corresponding

to their cubic order of growth. The fastest class includes Iterated Kendall and

Quicksort as well as Chanas Both (but not Chanas) and Eades Improved

(but not Eades), which appear to have quadratic growth. So our improved algo-

rithms deliver a speed increase.

The middle range of speeds has Chanas, and Eades, along with Degree Dif-

ference Sampled 1 highlighting that Degree Difference Sampled 1 runs

in asymptotically similar time to Chanas, although for larger data sets Degree

Difference Sampled 1 seems to have an advantage. The final class includes

121

4.2 Min Feedback Arc Set Local Search

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 10 100 1000

R
un

ni
ng

 t
im

e
(i

n
se

co
nd

s)

Problem size (number of vertices)

Iterated Kendall, Eades Improved
Eades, Chanas
Bubble-, Merge-, Quicksort
Triangle Both, Degree Difference
Degree Difference Sampled 1
Moves, Degree Difference Sampled 2
Chanas Both

Figure 4.11: The running time taken by a selection of the algorithms, as the problem
size increases. Each plot represents a class of algorithms with similar running times.
All experiments were run on the Biased dataset, p = 0.6.

Degree Difference Sampled 2 and Moves, which also appear to have cubic

growth.

4.2.3 Theoretical Results

We now show that various algorithms for Min-FAS cannot guarantee constant-

factor approximations. This is opposed to the previous section, where we experi-

mentally tested each algorithm to try and find which is most practical.

All graphs shown are tournaments but in the interest of readability, sometimes

not all arcs are shown. As in Chapter 2, in the Min-FAS figures below, only back-

arcs, with respect to the given ordering, are displayed. All pairs of nodes with no

arc displayed are assumed to have a right-pointing arc between them. We remind

the reader that the cost of an ordering is simply the total number of back-arcs.

Standard Bad Example

This example consists of a completely transitive tournament of size n, with one

minor perturbation—there is a single back-arc, from the last node (node n) to the

first (node 1). This example can catch out algorithms which are “too local” in

122

Local Search 4.2 Min Feedback Arc Set

...
(a) Global Optimum

...
(b) Local Optimum

Figure 4.12: Standard Bad Example: the global optimum has a single back-edge,
whilst the local optimum (for the Swaps heuristic) has n − 2. The only differ-
ence between the two is in the placement of the grey vertex—all other nodes are
unchanged.

...
Indegree: 2 1 2 n−3 n−3 n−2

1 2 3 n−2 n−1 n

Figure 4.13: The Counterexample for the Eades algorithm. The global optimum
is as pictured. The Eades algorithm will place the white node at the rightmost
position, creating n− 3 back-arcs, whilst removing only 2.

their operation. Figure 4.12(a) shows this (global) optimum configuration; a local

optimum for the Swaps heuristic is shown in Figure 4.12(b), with cost n− 2.

Note also that there is no guarantee that Bubblesort will start with the grey

node placed after the white node. As Bubblesort (like Swaps) only ever exchanges

adjacent nodes, if it starts from such a scenario, it will never reach a configuration

with the white node before the grey, and thus will only reach a costly local optimum.

This can also be explained by the fact that Bubblesort is simply a method to

choose Swaps-type steps.

The Eades algorithms

Figure 4.13 shows a modification to the standard bad example of Section 4.2.3,

in which the optimum solution has two back-arcs: from nodes n − 1 and n to

node 1. Displayed below each node is its indegree. The Eades and Eades Im-

proved algorithms both place node 2 at the left of their solution (as it has the

123

4.2 Min Feedback Arc Set Local Search

... ...
(a) Global Optimum

...
(b) Local Optimum

Figure 4.14: Counterexample family (n even) for the Moves local-search heuristic
(and thus for Chanas & Chanas Both). Consists of two sets of n/2 vertices (black
and white), each of which is internally transitive. (a) Shows the global optimum.
The black vertices are placed before the white, and each white vertex has a back-
arc to the single black vertex n/2 positions preceding it. (b) If we interleave the
black and white vertices (each set is internally in the same order), we have a locally
optimal solution. Yet now there is a back-arc from each black vertex to the white
vertex that is 3, 5, 7, . . . positions preceding it.

lowest indegree); with that node removed, the induced subgraph is precisely the

same as the original one, albeit one node smaller. The final order will therefore be

(2, 3, 4, 5, . . . , n− 1, n, 1), which has a cost of n− 3.

Moves and Chanas

The configuration of Figure 4.14(b) is a local optimum for the Moves heuristic.

The spacing of the back-arcs ensures that it is never an improvement to move a

single node.

Following the discussion at the end of Section 4.2.1, neither the Chanas nor the

Chanas Both algorithms could escape from this configuration. Note that this is a

local plateau—every possible move will increase the cost. Thus, even repeated calls

to Chanas will not remove us from this configuration.

The cost of the local optimum is n2/8 − n/4. The global minimum, shown in

Figure 4.14(a), places all black nodes before all white nodes, without changing the

relative order within the colour group, thus incurring a cost of n/2. So the locality

gap here is in Ω(n).

124

Local Search 4.3 Min 2-Correlation Clustering

4.3 Min 2-Correlation Clustering

4.3.1 The Algorithms

Local Search for Min-2-CC.

For the Min-2-CC problem, the obvious local improvement to make to is to move

(or as we call it, toss) a vertex from one cluster to the other if, by doing so, the cost

of the clustering is lowered.

Given a clustering C, the clustering Cv represents the same clustering as C, except

with v ∈ V in the opposite cluster. Remembering that for two clusters, we label

vertices with ±1, we have

Cv(u) =

−C(u) if u = v,

C(u) otherwise.

We then define λv = Min-2-CC(C) −Min-2-CC(Cv), the improvement caused

by the change (which is positive if there is some improvement). We define Tosses

as follows:

Algorithm: Tosses

Run Local Search with the following neighbourhood relation:

N (C) = {Cv : v ∈ V }

For any clustering C, we write as C̃ the locally-optimal clustering that is obtain by

running Tosses starting at C. The Tosses algorithm will take time O(n3) in the

worst case.

Pick-a-Vertex Type Algorithms

The PAST Algorithm In Chapter 2, we discussed the Pick-a-Vertex algo-

rithm. It was designed for complete graphs, and there is no obvious extension to

incomplete graphs. There may not be a candidate vertex v that is adjacent to every

other vertex.

125

4.3 Min 2-Correlation Clustering Local Search

In the complete case, the edges incident to v form a spanning tree of the under-

lying graph G. Now, any spanning tree T induces a clustering of V :

Definition 14. Let T be a spanning tree of a signed graph G = (V,E, l). Then the

clustering CT is the unique 2-clustering that agrees with T .

We can find CT by arbitrarily rooting the tree at some vertex r ∈ V , setting

CT (r) = 1 and then deciding CT (v) based on the number of − edges on the unique

path from r to v. As T is a tree, there are no cycles and every edge is respected. As

T spans G, CT is properly defined1.

From this perspective, the Pick-a-Vertex algorithm is selecting from a set of

spanning tree-based clusterings. The spanning trees the Pick-a-Vertex considers

are ‘star’ trees rooted at each vertex. We therefore propose the PAST (Pick-a-

Spanning-Tree) algorithm:

Algorithm: PAST

For each vertex v ∈ V , perform a breadth-first search from v to find a

spanning tree Tv, and the clustering CTv . Return the CTv that minimises

Min-2-CC(CTv).

By using breadth-first-search trees, PAST chooses the same spanning trees as Pick-

a-Vertex on complete graphs, and is thus a generalisation. This time the running

time will be O(n3), as we have an extra step of calculating a BFS tree.

The PASTA-toss Algorithm It is certainly possible for the solution chosen by

the PAST algorithm to be very much sub-optimal; such a solution can often by

improved by a Local Search algorithm such as Tosses. In fact, we will see such

an example in Section 4.3.3. In that section we will also see configurations in which

the Tosses algorithm alone can get stuck at far from optimal configurations.

With this in mind, we could perhaps combine the two algorithms fruitfully. We

define PASTA-toss, a combination of the two:

1Obviously, if we had chosen CT (r) = −1, we would have obtained a different clustering function.
However, we would still have reached the same clustering. See the end of Section 2.2 for a discussion
of this issue.

126

Local Search 4.3 Min 2-Correlation Clustering

Algorithm: PASTA-toss

For each vertex v ∈ V , generate the clustering CTv as in the algorithm

PAST and run Tosses on CTv to get a locally optimal clustering C̃Tv .

Return the C̃Tv that minimises Min-2-CC(C̃Tv).

The combination of algorithms leads to a O(n4) algorithm, although we’d expect

much better performance in practice a one step is a local search. Clearly the

PASTA-toss algorithm will return a solution no worse than the PAST algorithm.

On complete graphs, we know that Pick-a-Vertex is a 3-approximation. In Sec-

tion 4.3.3 we will show that PASTA-toss is a 2-approximation. Thus the addition

of a local-search step to the Pick-a-Vertex algorithm has substantially improved

its approximation factor. This is a significant result, as we have seen that it is rare

for local-search algorithms to have any type of approximation guarantees. In fact,

we will see that the Tosses algorithm alone is not a constant-factor approximation

algorithm for any constant.

The PASTA-flip Algorithm

The PASTA-flip algorithm is similar to the Triangle Deletion algorithms,

but is designed for the Min-2-CC problem, and can work on incomplete signed

graphs—it requires some special techniques to do so.

Removing Bad Cycles We will be operating in a similar way, by reversing the

labelling on edges in order to try to remove all ‘bad’ cycles from the graph. However,

in the Min-2-CC case, it is not ~4s that we need to delete, it is a certain type of

labelled cycle.

Definition 15. A bad cycle is a cycle C in G in which there is an odd number of

negative-labelled edges.

These cycles are called bad as there is no clustering of the vertices in C that

satisfies all the labels of C’s edges. Like directed cycles, if there are no bad cycles

in a graph, solving the problem is easy:

Lemma 2. Suppose l is a labelling that causes G to have no bad cycles. Then there

is a clustering of the vertices with cost zero.

127

4.3 Min 2-Correlation Clustering Local Search

Proof. Choose some vertex v and assign every other vertex u to a cluster based on

the parity of the number of negative edges on the paths between u and v. Note that

the parity is uniquely defined: if not, there would be a cycle with an odd number

of negative edges. This proves the lemma, as all paths (and edges, as length one

paths) are respected.

The basic principle of PASTA-flip is similar to that of the Triangle Dele-

tion algorithms—it might be a good idea to flip the label on an edge that is involved

in many bad cycles: those cycles would then become good. If this process could be

repeated in an organised way so that no bad cycles remained, then the clustering

problem would be trivial.

In the Min-FAS case, as we were operating on tournaments, we knew that every

directed cycle must contain a directed triangle (~4)—a directed cycle of length three.

This fact led us to focus on only ~4s—if we eliminate all ~4s, we eliminate all directed

cycles—and there are only O(n3) such cycles.

However, as we aim to design an algorithm that can operate on incomplete signed

graphs, we do not have the luxury of focusing on length-three bad cycles in the Min-

2-CC case. This is a major drawback, as we cannot consider all possible cycles in

the graph (there is an exponential number of them). Also, it is conceivable that

there is a scenario where there exists a bad cycle, yet there is no edge to flip that

will reduce the number of bad cycles. To deal with this problem, we will consider

subsets of all the cycles which generate the complete cycle set—much as the ~4s

generated all the directed cycles. The smallest cardinality such sets are known as

cycle bases.

Cycle Bases Let us represent a set of edges by an |E|-dimensional vector with

entries in Z2. The sets of edges E then form a vector space, under the symmetric

difference operation. The set of all cycles F is a subspace of this vector space.

Standard results (see e.g. Diestel and Diestel [35] pp. 26-27) show that the cycle

space has dimension |E| − |V | + 1—that is, it can be generated by certain sets of

|E| − |V |+ 1 independent cycles—such a set is thus a cycle basis.

Remark 4. Let B be a set of cycles of a signed graph G, such that B spans the

cycle space F inside E. Then if no cycle in B is bad, then no cycle in F is bad.

128

Local Search 4.3 Min 2-Correlation Clustering

Proof. Suppose C ∈ F is a cycle. Then C is generated by a set (b1, . . . , b`) of cycles

from B, none of which are bad. So each cycle bi has an even number of − edges. As

any edge in C is contained in an odd number of bi, a simple parity argument shows

that C contains an even number of − edges.

A cycle basis spans the complete cycle space, so we can see that if all cycles in

a basis are good, Remark 4 tells us we can solve the Min-2-CC problem trivially.

Note that the set of ~4s was not a basis for the set of directed cycles of a tournament,

it did span them (as evidenced by Figure 2.6).

Although there are many cycle bases, we can generate one for any spanning tree

T of G. We obtain a basis known as a fundamental basis with respect to T by

forming a cycle Ce for each edge e = (v, w) /∈ T : Ce is e plus the path in T from v

to w.

The PASTA-flip Algorithm Consider such a fundamental cycle basis BT , for

some spanning tree T . Each edge e /∈ T will only be involved in a single cycle in the

basis, Ce. So there is one straightforward technique to ensure that each cycle in the

basis is good: if Ce is bad, simply flip e. At the end of this process, the labellings

on the T -edges will be respected. So if we had started with T v for some vertex v,

we have described precisely the per-vertex operation of the PAST algorithm.

However this is inefficient—edges inside T are involved in many basis cycles,

whereas each other edge is only involved in one. Flipping one of these edges could

potentially fix a number of bad cycles (in the basis), and thus mean fewer flips. This

is similar to the idea of Triangle Deletion algorithms. Each flip represents a

disagreement between the output clustering and the (original) edge labelling. With

this in mind, we define the PASTA-flip (Pick-a-Spanning Tree and flip) al-

gorithm as follows:

Algorithm: PASTA-flip

For each vertex v ∈ V create a breadth-first-search tree Tv, and the

corresponding fundamental basis BTv . While there is an edge e ∈ Tv

which is involved in more bad basis cycles than good, flip e. When there

are no such edges left, produce the clustering induced by the (probably

altered) Tv, CTv . Return the solution found of lowest Min-2-CC cost.

129

4.3 Min 2-Correlation Clustering Local Search

e

V1 V2

d

Figure 4.15: Flipping an edge in PASTA-flip.

The action of “flipping” never worsens the Min-2-CC cost, leading to a worst-case

runnning time of O(n4), and giving the following theorem.

Theorem 1. The cost of the solution returned by PASTA-flip is no greater than

the cost of the solution returned by PAST.

Proof. Consider some particular spanning tree T . We will show that PASTA-

flip will not produce a worse clustering than PAST would on T . Considering the

operation of both algorithms, this will be sufficient to prove the theorem.

The Min-2-CC solution induced by PAST is completely determined by the sign

of the edges in the spanning tree. The only difference for PASTA-flip is when an

edge is flipped. However, we claim each edge flip is a local semi-improvement step—

that is, the cost of the labelling induced after the flip is always less than or equal to

the cost before. Thus PASTA-flip, by induction, will have lower or equal cost to

PAST.

To see that an edge flip is a local semi-improvement, consider Figure 4.15. Here

we are considering flipping an edge e on the spanning tree T . As T is a tree, e

separates V into two subsets V1 and V2. Flipping e will flip all the labels inside one

subset, and thus invert the ‘correctness’ of each edge d ∈ D = Ec(V1, V2) \ e, the

set of edges linking vertices between V1 and V2. So, if C is the current clustering

induced by the spanning tree, and C ′ is the solution induced after e is flipped,

Min-2-CC(C ′) ≤Min-2-CC(C) + |Dcorrect| − |Dincorrect|+ 1

Here Dcorrect = {d ∈ D, d satisfied by C} are the edges between V1 and V2 which

130

Local Search 4.3 Min 2-Correlation Clustering

will be made incorrect by flipping e, and Dincorrect is defined in the analogous way.

The final term (the +1) and the inequality is due to the fact that reversing e might

violate e itself.

So we need to show that e will only get flipped if |Dcorrect| ≤ |Dincorrect|. For any

d ∈ D, as d /∈ T , there is a cycle Cd ∈ BT . Clearly Cd contains e, as we know e

separates V1 and V2 on T . Also it is clear that any cycle through e in the basis must

contain exactly one such D-edge.

Suppose that d is not satisfied by C. This means that the total sign of the path

Cd \ d is different to that of d—that is, Cd has an odd number of − edges. So Cd

is a bad cycle. Conversely, if d is satisfied, Cd is good. So the number of bad cycles

that e is involved in is exactly the number of unsatisfied D edges (|Dincorrect|). This

completes the proof as we know the algorithm will only flip e if that number is

strictly greater than the number of good cycles that e is involved in (|Dcorrect|).

4.3.2 Experiments

In this section, we perform some experimental tests of the Min-2-CC algorithms

we have described in this chapter, along with some mentioned previously. We aim

to obtain an idea of the practical performance of the algorithms, to complement the

theoretical results of the next section.

Algorithms Tested

In this section, we will test all of the algorithms described in Section 4.3.1, along

with the following additional algorithms:

• The algorithm of Dasgupta et al. [28], based on a Goemans-Williamson style

SDP, which we term GW-SDP.

• The spectral Min-2-CC relaxation, as discussed in on Page 87 of Chapter 3.

As mentioned, the PTAS of Guruswami and Giotis [53] was not feasible to imple-

ment, so we tested a PTAS-like algorithm, called PTAS-m, where m is the sample

size. Also, the algorithm we refer to below as Tosses takes n = |V | randomised

starting clusterings, and produces the best clustering found after toss-based search

131

4.3 Min 2-Correlation Clustering Local Search

from each. This is to compare it to PASTA-toss, which uses n PAST-style start-

ing clusterings. Also we experimented with PASTA-flip+toss, which performs

PAST, and for each tree flips edges (until no more flips are possible) and then tosses

vertices.

Datasets

For our experimental work, we used three datasets: the regulatory network of human

epidermal growth factor (EGFR), as used by both Dasgupta et al. [28] and Huffner

et al. [59] in their investigations, and two synthetic datasets.

Each synthetic dataset was generated randomly subject to two parameters, which

were independent over each edge. The first, pe, is the probability that an edge exists

(with either sign), and given the edge exists. The second, p, is the probability that

the edge agrees with a randomly-generated initial clustering.

The first data set, called Sparse, had problems of size 200, a pe value of 0.05,

and a p value of 0.3, which was an attempt to approximate the EGFR dataset.

The second data set, called Complete, had problems of size 100, pe = 1—thus all

graphs are complete—and p = 0.45. We found, empirically, that lower values of p

result in Min-2-CC problems that are easier to solve.

All experiments were run on a 2 GHz Intel Core 2 Duo machine with 2GB

of RAM, running MAC OS. All algorithms were implemented in C, apart from

Spectral Clustering and GW-SDP, which were run in Matlab 7.4.0. Note

that this means the times recorded for the Matlab algorithms perhaps were not

entirely appropriate for comparison.

Results

Figures 4.16 and 4.17 show the relative performances of the algorithms discussed in

this paper on the EGFR and Complete datasets. These plots compare the algo-

rithmic performance (average number of errors; that is the Correlation Clus-

tering cost) to the average time taken to achieve that performance. As we can see,

the PTAS algorithms and PAST perform poorly as a rule; Dasgupta can achieve

good results, but is very slow in comparison to our algorithms. Although the Spec-

tral Clustering technique can be quite fast on sparse graphs, its performance is

132

Local Search 4.3 Min 2-Correlation Clustering

 180

 200

 220

 240

 260

 280

 300

 320

 340

 0.1 1 10 100

A
ve

ra
ge

 n
um

be
r

of
 e

rr
or

s

Time (in seconds)

GW-SDP

Spectral PAST

PASTA-flip
PASTA-toss

PASTA-flip+toss

PTAS-10 PTAS-15

Tosses

Figure 4.16: The time/effectiveness profile on the EGFR Dataset.

not great.

The more interesting result is the good performance of the Tosses heuristic:

even though in the next section we will see that the Tosses algorithm has no

theoretical guarantees (there are examples where it performs arbitrarily badly) on

the real examples that we consider, it does almost as well as PASTA-toss, which

does have a strong theoretical guarantee on its performance. This quality of strong

performance without theoretical guarantees is common to local-search algorithms;

this is a reason why the fact that PASTA-toss does have a guarantee is particularly

important. Table 4.4 summarises the results on all three datasets.

4.3.3 Theoretical Results

Tosses

The Tosses algorithm, used naively, has no constant-factor approximation guaran-

tee.

Consider a complete graph with n/2 disjoint edges labelled −, with all other

edges are labelled +, as shown in Figure 4.18. The global minimum here has cost

n/2; however, there is a local minimum—which cuts across each minus-edge—that

has cost n(n− 2)/4.

133

4.3 Min 2-Correlation Clustering Local Search

 2100

 2150

 2200

 2250

 2300

 2350

 1 10 100 1000 10000

A
ve

ra
ge

 n
um

be
r

of
 e

rr
or

s

Time (in seconds)

GW-SDP

Spectral

PAST

PASTA-flipPASTA-toss
PASTA-flip+toss

PTAS-10

PTAS-15

Tosses

Figure 4.17: The time/effectiveness profile on an average over 100 instances of com-
plete signed graphs, n = 100 and p = 0.45.

EGFR Sparse Complete

Algorithm Cost Time Cost Time Cost Time

GW-SDP -7.042 54.01 -1.081 26.28 0.626 689.01
Spectral Clustering 19.249 0.42 22.413 2847.70 2.064 114.35
PAST 16.901 1.37 29.756 29.16 11.071 4.54
PASTA-flip -6.103 3.55 -3.338 80.60 0.004 20.77
PASTA-toss -2.347 2.22 -1.990 54.82 -0.026 8.54
PASTA-flip+toss -7.042 4.25 -4.184 99.62 -0.022 23.18
PTAS-10 54.930 2.42 49.897 102.97 7.239 31.45
PTAS-15 52.582 79.06 40.525 3407.03 5.228 1052.27
Tosses 0.000 1.69 0.000 48.03 0.000 6.91

Table 4.4: The results of running all Min-2-CC algorithms on all datasets. We
report the average of the percentage (%) relative difference between the number of
errors compared to Tosses, over all problem instances in the dataset. The running
time is measured in seconds.

134

Local Search 4.3 Min 2-Correlation Clustering

−

−

−

−

−

Figure 4.18: A counter-example for the Tosses algorithm. This is a complete signed
graph—all edges not shown are labelled +. The local minimum places the black and
white vertices in different clusters, with cost 20, whilst the global minimum places
all vertices together, with cost 5.

Pick-a-Vertex

Bansal et al. proved that Pick-a-Vertex was a 3-approximation for the Min-2-

CC problem on complete graphs. It turns out that the 3-approximation is tight,

a fact not mentioned in the original paper. Consider a complete graph, consisting

solely of positive edges, apart from a Hamiltonian cycle of negative edges, as shown

in Figure 4.19. The optimal solution (placing all vertices together) has cost n, whilst

every Pick-a-Vertex solution will have cost 3n − 10. Notice that the Pick-a-

Vertex clustering described above is not a local optimum.

4.3.4 Proof that PASTA-toss is a 2-approximation

In this section we develop theoretical results, leading to a proof that PASTA-toss

is a 2-approximation on complete graphs. This is the main theoretical result of this

chapter; as we discussed earlier, theoretical results about local-search algorithms are

rare. We have already seen that Tosses alone has no constant-factor guarantees.

To begin, we need the concept of a switching class.

135

4.3 Min 2-Correlation Clustering Local Search

1 2

3

45

6

−

−

−

−

−

−

Figure 4.19: A counter-example for the Pick-a-Vertex algorithm. All unlabelled
edges are labelled +. The optimal solution places all nodes together, with cost 6.
As the graph is symmetric, it does not matter which vertex is ‘picked’. Suppose 1
is chosen—the resulting clustering is ({1, 3, 4, 5}, {2, 6}), which has cost 8.

Switching

The notion of switching in signed graphs is well established [111]. Given a labelling l,

we generate another labelling lv by selecting a vertex v and flipping the labels on the

edges incident to v. We may repeat this switching operation at other vertices, gener-

ating further labellings. The family of all possible labellings can be partitioned into

equivalence classes under this (multiple) switching operation: we refer to labellings

in the same class as switching equivalent.

We also introduce the notion of switching on 2-clusterings: we switch a clustering

C to Cv by tossing v to the other cluster. We have seen this earlier in the definition

of the Tosses algorithm. In this way, every clustering can be obtained by a series

of switching steps from C. Note that this same fact does not hold about labellings.

Lemma 3. The cost of C under l is the same as the cost of Cv under lv.

Proof. The only edges affected by these operations are edges incident to v (see

Figure 4.20). For such an edge e = (v, u), l(e) = −lv(e), and C(v) = −Cv(v), whilst

C(u) = Cv(u), so the cost of this edge is unchanged.

Lemma 3 tells us that if l has a solution of cost k, lv also has a solution of cost

k. Also as (lv)v = l, the converse is true. Consequently, we see the following useful

corollaries.

Corollary 3. Let G = (V,E, l) be a signed graph. Then, for all labellings l′ in l’s

switching class, the optimal Min-2-CC cost on G′ = (V,E, l′) is equal to the the

136

Local Search 4.3 Min 2-Correlation Clustering

+

−

−
−

+

+

−

v

+

−

−
−

+

+

−

v

+

−

−
−

−

−

−

v

+

−

−
−

−

−

−

v

Toss

Toss

Switch Switch

C

l

Cv

lv

Figure 4.20: A demonstration that switching and tossing at the same vertex does
not affect the edges that are violated. The dashed edges are not respected by the
relevant clustering (C on the left and Cv on the right). We see that the same edges
are violated by Cv under lv as by C under l.

137

4.3 Min 2-Correlation Clustering Local Search

optimal Min-2-CC cost on G. In particular, if C∗ is an optimal clustering for l,

then C∗v is an optimal clustering for lv.

Corollary 4. For a given labelling l of a graph G = (V,E, l), there exists a labelling

l̄, switching equivalent to l, for which placing all vertices together in one cluster is

optimal.

Proof. Suppose C is the optimal solution to Min-2-CC on G. Let S = (v1, . . . , v`)

be the set of vertices labelled −1 by C. If we let C0 = C, and Ci = (Ci−1)vi
,

then C` places all points together in one cluster. Consider the switching equivalent

labellings li defined in a similar fashion. Then Corollary 3 tells us that Ci is the

optimal clustering for (V,E, li = l̄).

Note that the optimal cost for l̄ in Corollary 4 equals the number of negative edges

in l̄.

Switching-Invariant Algorithms

Imagine we knew that an algorithm behaved in essentially the same way on all

switching-equivalent labellings. Then Corollary 4 tells us that we can focus on

labellings in which the optimum has all elements in one cluster.

Definition 16. An algorithm is switching invariant if, whenever it produces C on

input l, it produces Cv on input lv.

We now investigate the behaviour of two key algorithms under switching.

Lemma 4. PAST is switching invariant.

Proof. Consider a switch on v ∈ V . Let T be any spanning tree of G inducing a

clustering CT under PAST. Consider two vertices u and x in V . Whether they are

clustered together depends only on the parity of the number of negative edges on

the path between u and x in tree T . If v is not on this path, clearly the parity is

unchanged. If v is on the path, the parity is changed only if u or x is v.

So, under lv, the clustering based on T is switching invariant. Lemma 3 tells us

that the spanning tree that induces the best clustering on l also induces the best

clustering on lv.

138

Local Search 4.3 Min 2-Correlation Clustering

We can now infer an interesting fact about spanning trees.

Lemma 5. For a given labelling l on a graph G, there exists a spanning tree T that

induces an optimal clustering.

Proof. Consider labelling l̄ as defined in Corollary 4. The positively-labelled edges in

l̄ form a subgraph that is connected and spans G: if they did not, then there would

be a non-trivial cut of G with only l̄-negative edges. This would imply that the

optimum clustering must use two clusters, contradicting the definition of l̄. Hence,

we can find a spanning tree T of positively-labelled edges in l̄: this induces a solution

with all vertices in one cluster. The proof of Lemma 4, combined with Corollary 3

shows that T will induce the optimum solution on l.

Tosses is not exactly switching invariant, but we can prove a similar result.

Lemma 6. If Tosses is given l as input and uses C as a starting point, resulting

in solution C̃, then given input lv and starting point Cv, Tosses produces solution

(C̃)v.

Proof. Consider running two simultaneous instances of Tosses, one starting from

C and the other starting from Cv. To begin with, the only edges that could possibly

be different are the edges incident to v. The proof of Lemma 3 shows that the edges

that incur a cost are the same in (lv, Cv) as they are in (l, C). So in both cases, λu

is the same, for all u ∈ V . Therefore the same sequence of vertices will be chosen

to be tossed.

The following lemma is an immediate consequence of Lemmas 4 and 6.

Lemma 7. PASTA-toss is switching invariant.

Proof that PASTA-toss is a 2-approximation

Since PASTA-toss is switching invariant, we can analyse its behaviour on input

labellings in which the optimum places all vertices in one cluster (refer to Corol-

laries 3 and 4). For such a labelling, no vertex has minus-degree more than n/2,

as otherwise a better clustering would be to place that vertex in its own cluster.

Also, the optimum cost is simply the total number of minus-edges in the graph,

139

4.3 Min 2-Correlation Clustering Local Search

as we know the optimal solution does not break an edge. If we let β be the min-

imum of the minus-degree (number of incident − edges) of all the vertices, then

Min-2-CC∗ ≥ βn/2.

To analyse the performance of PASTA-toss on complete graphs, consider the

iteration where PASTA-toss uses the spanning tree from v, a node of minus-degree

β. Initially, the algorithm splits the vertices into two sets, X0 = {v} ∪ N+(v) and

Y0 = N−(v). As the local-search algorithm progresses, vertices will be tossed from

one set to the other (call them X and Y). Consider the point at which the first

vertex is tossed from X to Y . Note that this means |Y | ≤ β.

We can compare the cost of the clustering (X, Y) to Min-2-CC∗ in a fashion

similar to Bansal et al. We form an estimate of the difference in cost between our

clustering and an optimum by counting the number of + edges between X and Y ,

discounting the − edges. For a vertex v ∈ V , and a set A, define A+
v to be the

number of + edges from v to A. A−v is defined in the analogous way. Then

Min-2-CC(X, Y)−Min-2-CC∗ =
∑
y

X+
y −

∑
y

X−y =
∑
y

pully ≤ βmax
y∈Y

pully ,

(4.1)

where pully = X+
y −X−y is the “pull” that X exerts on y.

If we let pushy = Y −y −Y +
y (the “push” that Y exerts on y), the local improvement

of swapping any node y ∈ Y is given by

impy = pully + pushy (4.2)

So we can use a bound on the local improvement of swapping a node (from X) to

get a contradictory bound on pully for a given y.

Theorem 2. PASTA-toss is a 2-approximation on complete graphs.

Proof. We claim at this point, when the first node to be swapped is from X, that

Min-2-CC(X, Y) ≤ 2(Min-2-CC∗).

Arguing by contradiction, suppose that Min-2-CC(X, Y) is not within a factor

2 of Min-2-CC∗. Then there must be some y0 ∈ Y such that pully0 > n/2.

140

Local Search 4.3 Min 2-Correlation Clustering

Let x0 be the vertex from X that is about to be swapped. By definition,

Y +
x0

+ Y −x0
= |Y | and X+

x0
+X−x0

= n− |Y | − 1

Since we have assumed that the optimum solution places all vertices together, x0 is

incident to at most n/2 negative edges, and so X−x0
≤ n/2. So we have

impx0
= X−x0

+ Y +
x0
−X+

x0
− Y −x0

≤ 2X−x0
− (X−x0

+X+
x0

) + (Y +
x0

+ Y −x0
) ,

which is at most 2|Y | + 1. Given x0 is the vertex which is about to be swapped,

impy0 ≤ impx0
≤ 2|Y |+ 1.

Alternatively, if the algorithm ends without ever swapping an x ∈ X, at the

conclusion, impy0 ≤ 0 < 2|Y |+ 1.

So, using (4.2) and our assumption, we have

pushy0 = impy0 − pully0 < 2|Y | − 1− n/2 (4.3)

Now we use the fact that y0 has to have at least β minus-edges to show a contra-

dictory lower-bound on pushy0 . We have

pushy0 = Y −y0 − Y
+
y0

= 2Y −y0 − |Y |+ 1

≥ |Y | − 2X−y0 + 1

= |Y |+X+
y0
−X−y0 − (X+

y0
+X−y0) + 1

> 2|Y |+ 1− n/2

The first equality follows as Y −y0 + Y +
y0

= |Y | − 1, the first inequality as the minus-

degree of y0, Y −y0 + X−y0 is at least β ≥ |Y |, and the second as X+
y0

+ X−y0 = n − |Y |
and X+

y0
−X−y0 = pully0 > n/2.

141

4.4 Conclusion Local Search

4.4 Conclusion

In this chapter, we have outlined a number of algorithms for both the Min Feed-

back Arc Set and the Min 2-Correlation Clustering problems. We studied

those algorithms, along with the state of the art algorithms for these problems, with

reference to both practical issues, and theoretical guarantees.

Notably, we have found that, for the Min-FAS problem, the Chanas algorithm

performs very well in practice. Additionally it has the advantage of the ability to be

combined with other algorithms; the best such algorithm to combine it with seems to

be the Degree Difference Sampled 1 algorithm, defined here. However, as it

is a variant of the Moves local-search heuristic, we have seen that it unfortunately

has no constant-factor approximation guarantees.

For the Min-2-CC problem, the algorithm PASTA-toss, as developed in this

chapter, achieves the strongest experimental results, along with the similar PASTA-

flip algorithm. Additionally, we have seen that PASTA-toss is a 2-approximation

algorithm, the best known constant-factor approximation result for the Min-2-CC

problem. A PTAS exists, but we have seen that in practice it is not very effective.

This approximation guarantee, rare for local-search approaches, is another point in

favour of this algorithm.

142

Chapter 5

Sampling

The final technique for solving approximation problems we are concerned with is

sampling. The idea of sampling is to take a large, complicated instance of a problem,

and find a less complex sub-problem which represents the larger one, by choosing—

sampling—a small set of vertices. We can then quickly solve the small, sampled

instance, quickly and often exactly, and somehow use the smaller solution to build

up a larger, complete solution to the original instance.

If we can somehow relate the size of the sampled sub-problem to the quality

of the solution to the large problem, then we can use this technique to trade-off

running-time with solution quality. If we take a larger sample, it will take a longer

time to find a very good solution to the sampled solution, but we will know we

get a better large-scale solution. It is this trade-off which is exploited by many

polynomial-time approximation schemes (PTASes).

As we’ve seen before, sampling algorithms can sometimes be specified with sam-

ple sizes so unrealistic that they become infeasible. However, this does not mean

that sampling cannot be used effectively for practical algorithms. For instance,

Bertolacci and Wirth [17] find that using a sampling technique, they can increase

the size of Correlation Clustering problems they can tackle using a variety of

algorithms.

In this chapter we will present PTASes for the k-Consensus Clustering prob-

lems. These algorithms will exploit a PTAS designed for the Max-k-Cut problem,

which uses such sampling heavily. Additionally, it exploits the related idea of repre-

143

5.1 Introduction Sampling

sentative sampling, which involves sampling points which ‘capture’ the location of

a cluster in some way. This related the superset sampling idea of Kumar et al. [74]

for geometric problems.

5.1 Introduction

In this chapter, we will present a series of results that will lead us to a Polynomial

Time Approximation Scheme for the k-Consensus Clustering problem. Note

that this is the standard Consensus Clustering problem, with the added re-

striction that the output clustering can have no more than k clusters, where k is a

constant.

The reason that we pursue the k-Consensus Clustering problem, and not the

full-blown Consensus Clustering, in seeking a PTAS is that Bonizzoni et al. [18]

recently demonstrated that min-Consensus Clustering is APX-hard, even with

as few as 3 input clusterings. This means that, unless P = NP, no PTAS for min-

Consensus Clustering with unrestricted number of clusters exists. Considering

the success of Giotis and Guruswami [53] in finding a PTAS for the 0/1 Min-k-

CC problem—again, in the 0/1 case, the Min-CC problem is APX-hard [21]—it is

natural to consider the restriction to min-k-Consensus Clustering.

Connecting Consensus Clustering to Max-Cut. As we outlined in Sec-

tion 2.2.6, any instance of the Consensus Clustering problem can be trans-

formed into an instance of metric-Correlation Clustering. So, rather than

designing a PTAS for min-k-Consensus Clustering, in this chapter we will fo-

cus on constructing a PTAS for the more general metric-Min-k-CC problem. In

order to do that, we will exploit the relationship between k-CC and the k-Cut prob-

lems; that is Min-k-Uncut and Max-k-Cut. This relationship, as we mentioned

in Section 2.2.4, is

Max-k-CC(C) = Max-k-Cut(C) + eu(C)−Min-k-Uncut(C) (5.1a)

Min-k-CC(C) = Min-k-Uncut(C) + ec(C)−Max-k-Cut(C) , (5.1b)

144

Sampling 5.1 Introduction

The reason we are interested in this relationship is because, as we mentioned in

Section 2.2.2, the k-Cut problem is very well studied. In fact, there is a PTAS

for both metric-Max-k-Cut [44] and metric-Min-k-Uncut [60; 43]. So, in this

chapter, we will aim to use those PTASes to construct another for metric-Min-k-

CC.

A PTAS for metric Min-k-Uncut. To achieve this, we will need to study

the PTAS for metric-Min-k-Uncut in some detail. The PTAS for the general

case k ≥ 2 was developed by Fernandez de la Vega et al. [43], expanding a PTAS

originally developed for metric-Min-Uncut, by Indyk [60].

We will describe both PTASes in detail in subsequent sections, but the basic

structure of the algorithms is a familiar one for designers of minimisation PTASes.

We harness an existing maximisation PTAS for the complementary problem; al-

though this will not work in every instance, as a good maximisation approximation

is not necessarily good for the minimisation objective, such instances have spe-

cial properties that we can exploit. In this case, the maximisation PTAS, for the

metric-Max-k-Cut problem was supplied by Fernandez de la Vega and Kenyon [44],

building on various dense-Max-k-Cut PTASes, as were mentioned in Section 2.2.2.

Results of this Chapter. In this chapter, we will mirror the results mentioned

for the metric k-Cut problems to the metric k-CC problems. That is, we will find

a PTAS for the metric-Max-k-CC problem, and then exploit it to develop a PTAS

for the metric-Min-k-CC problem. Consequently, we will have a PTAS for both

k-Consensus Clustering problems.

Indyk, and subsequently Fernandez de la Vega et al., exploit a ‘well-separatedness’

property of metric-Min-k-Uncut problem instances that are not approximable by

the metric-Max-k-Cut PTAS to show that an algorithm based on representative

sampling will be fruitful in the metric-Min-k-Uncut case. In Section 5.4.3, we will

show that the metric-Min-k-CC instances that our metric-Max-k-CC PTAS does

not approximate well also share the same well-separatedness quality, and thus can

be approximated from a Min-k-Uncut perspective, using the same algorithm.

We will then use the relationship between k-CC and k-Cut—see (5.1)—which

tells us that if we have a good Min-k-Uncut approximation to an optimal Min-k-

145

5.1 Introduction Sampling

CC solution with the same cluster sizes, we have a good Min-k-CC approximation.

This means that if the algorithm of Fernandez de la Vega et al.—which we can

apply as the well-separatedness condition holds—could guarantee generating certain

cluster sizes, we could simply apply it to the k-CC case.

However, the algorithm of Fernandez de la Vega et al. makes no such guarantees.

So we need to use a very important assignment step which will serve to balance the

sizes of the clusters correctly. This will ensure than we can apply (5.1), and achieve

the minimisation PTAS.

We refer the reader to Section 2.2.4, and to Table 2.1 to place our results in

the context of other results regarding Consensus Clustering, Correlation

Clustering and Max-Cut.

5.1.1 Preliminaries

As we focus exclusively on metric problems in this chapter, instead of w, we will use

δ to indicate the distance between vertices. Then define δ(A,B) to be
∑

a∈A
b∈B

δ(a, b),

and δ(A) to be δ(A,A). The following is a simple application of the triangle in-

equality:

Proposition 3. For all X, Y, Z ⊆ V ,

|Y |δ(X,Z) ≤ |Z|δ(X, Y) + |X|δ(Y, Z) .

Proof. For every x ∈ X, y ∈ Y, z ∈ Z, we know that

δ(x, z) ≤ δ(x, y) + δ(y, z) .

So, summing over X, Y, Z, we have

|Y |δ(X,Z) =
∑

x∈X,y∈Y,z∈Z

δ(x, z) ≤
∑

x∈X,y∈Y,z∈Z

δ(x, y) +
∑

x∈X,y∈Y,z∈Z

δ(z, y)

= |Z|δ(X, Y) + |X|δ(Y, Z) .

146

Sampling 5.2 Overview

5.2 Overview

We begin this chapter by explaining, without proof, how Indyk [60] used the PTAS

for Max-Cut, (the maximisation version of k-Cut with k = 2) to find a PTAS for

Min-Uncut, which is the corresponding minimisation version. We can then sketch

an algorithm, an analogue of our full Min-k-CC algorithm, for the case k = 2. This

will explain many of the techniques involved, and highlight the connections and the

extra difficulty involved in the k-CC case.

Using a Max-Cut PTAS for Min-Uncut. As we have seen in Section 2.2.2,

there is a long history of PTASes to solve Max-Cut and Max-k-Cut in the dense

case. Fernandez de la Vega and Kenyon [44] provided a simple, clean reduction to a

PTAS for the metric-Max-Cut problem. However, as we discussed in Section 1.1,

and will see precisely in Remark 7, we cannot simply apply a maximisation PTAS

to a complementary minimisation problem to get a PTAS.

It turns out that we can use the Max-Cut PTAS for Min-Uncut precisely

when

Max-Cut∗ ≤ O(
1

ε
)Min-Uncut∗ (5.2)

That is, the PTAS for metric-Max-Cut will only act as a PTAS for those cases of

metric-Min-Uncut where the optimal Max-Cut value is not too much bigger than

the optimal Min-Uncut value. Or, perhaps of more interest, in the cases where it

does not work, that Max-Cut value is much larger. Remembering (1.1), we can

see that this means the ‘difficult’ instances are those in which the value Max-Cut∗

is close to the value W =
∑

u,v∈V δ(u, v).

Indyk’s insight was to ask what exactly this implies about those instances of

Min-Uncut. If Max-Cut∗ is very large, then Min-Uncut∗ is close to zero: the

edges cut by the optimal clustering C (which is of course shared by both problems)

tend to be relatively long, and the edges not cut tend to be relatively short. This of

course means that the solution is particularly easy to find; in fact a simple sampling

algorithm will do the job.

147

5.2 Overview Sampling

5.2.1 Indyk’s Algorithm

Let us assume we are considering an graphs G, where (5.2) does not hold. Consider

the optimal clustering, C. To begin with, we will guess the cluster sizes |C1| and

|C2| (without loss of generality, |C1| ≥ |C2|). We then proceed differently depending

on what those sizes are. How can we guess the sizes |C1| and |C2| when we have no

clue about C? Clearly we cannot, but we can simply run our algorithm for each of

the n different possibilities. This will add a multiplicative factor of n to our running

time, and it will remain polynomial. In fact, in the full algorithm, we will be guess

many such quantities. However, as long as each quantity only adds a polynomial

factor, and there are only a constant number of them, we retain a overall polynomial

running time.

What we cannot do, for instance, is guess the cluster membership of each point.

Although there are only two choices for each point in V , there are n points—adding

n different multiplicative factors of 2 leads to an increase in running time of 2n.

One larger cluster: Unbalanced Cut. Suppose C1 is much larger than C2.

Then a point c1 chosen at random is likely to be in C1. In fact, there is a good

chance that c1 will be a good representative of C1, that is

Definition 17.

δ({c1}, C1) ≤ 2δ(C1)

|C1|
(5.3)

This means that the distance from a point v ∈ V to c1 is a good estimate of the

distance from the point to C1, viz.

Lemma 8 (F. de la Vega et al., Lemma 4).

|δ(v, c1)|C1| − δ(v, C1)| ≤ 2δ(C1)/|C1| .

As we can now use c1 as a stand-in for the full cluster C1, we can simply find

the full clustering by the following simple procedure.

Algorithm: Unbalanced Cut

Let D1 be the |C1| closest points to c1 as one cluster, and D2 be the

remaining points.

148

Sampling 5.2 Overview

Two large clusters: Balanced Cut. Suppose instead that the two clusters are

both relatively large. In this case, we should consider the distance to both clusters

when cutting—previously we could ignore the distance to C2 as it was small enough

to be irrelevant. To do this, we need a representatives from each clusters—however,

as both clusters are large, there is a relatively high probability of any two randomly

sampled points being representatives of both clusters. Repeated sampling—basically

guessing as mentioned previously—will yield a c1 and c2 which are representatives

as per Definition 17.

Remembering Lemma 8 above, we define the quantity δ̂i(v) = |Ci|δ(v, ci). As

ci is a representative of Ci, by Lemma 8, δ̂i(v) will approximate the quantity

δi(v) = δ({v}, Ci). Now that we have a good measure of the distance to both

clusters, we can run the following algorithm:

Algorithm: Balanced Cut

Output a clustering D, defined as follows:

D(v) =

1 if δ̂1(v) ≤ δ̂2(v);

2 otherwise.

So Indyk’s algorithm will use either a) the metric-Max-Cut PTAS, b) Unbal-

anced Cut, or c) Balanced Cut, depending on whether the clusters in C are a)

close, b) far and different sizes, c) far and both large. Indyk outlines techniques to

run his algorithm in time O(log1/εO(1)

n1+γ), for any γ > 0.

5.2.2 Adapting Indyk’s Algorithm to Min-CC.

The key observation here is the connection between Min-k-Uncut and Min-k-CC,

which using (5.1b) and a generalisation of (1.1) gives, for any clustering X :

Min-k-CC(X) = 2Min-k-Uncut(X) + ec(X)−W (5.4)

As we are dealing with a complete graph (a metric), ec(X) =
∑

i<j≤k |Xi||Xj|.

149

5.2 Overview Sampling

(a) A single point x, and n
copies of the same point Z. (i.e.
δ(z1, z2) = 0 for all zi ∈ Z.)

(b) Single points x and y, and n copies of
the same point Z.

Figure 5.1: Examples of the differing behaviour of Min-Uncut and Min-2-CC
when cluster sizes are different. For (a), the optimal solutions are different; in (b)
the optimae are the same, but a good approximation for Min-Uncut is not a good
approximation for Min-2-CC.

Thus the cut term is completely determined by the cluster sizes, and not the content

of the clusters, so the following remark holds.

Remark 5. For a given metric graph G, an optimal solution C to Min-k-Uncut

on G is an optimal solution to Min-k-CC on G if and only if there is an optimal

solution to Min-k-CC C ′ with the same cluster sizes as C.

Proof. Clearly if there is no optimal solution to Min-k-CC with the same cluster

sizes as C, C cannot be such an optimum. Suppose that there is an optimal solution

C ′ with the same cluster sizes. Then ec(C) = ec(C ′), and, by (5.4),

Min-k-CC(C) = 2 Min-k-Uncut(C) + ec(C)−W

≤ 2 Min-k-Uncut(C ′) + ec(C ′)−W as C is k-Cut optimal,

= Min-k-CC(C ′) .

Remark 5 has a few immediate implications. Firstly, note that there are certainly

cases where the optima are different for the same graph G. For example, consider

Figure 5.1(a). In this simple example, the difference between the problems becomes

apparent. There is a single set of edges, from x to the points in Z, of length 1/n.

Min-Uncut, desperate to cut edges, will separate x from Z, with cost 0, whereas

150

Sampling 5.2 Overview

Min-2-CC will respect the fact that the edge weights are small, incurring cost 1.

Note that the Min-Uncut optimal solution has cost n− 1 for Min-2-CC.

Also, it can be proved—see Lemma 15 below—that if a solution D has the

same cluster sizes as some clustering C, and is a good approximation to C in terms

of Min-k-Uncut cost, then D will be a good approximation to C in terms of

Min-k-CC cost. However, if the cluster sizes are not exactly correct, things can

go horribly wrong, as the example in Figure 5.1(b) demonstrates. Here, the optimal

solution to both problems is given by the clustering C = {{y}, {x} ∪ Z}, which has

cost 1−nε in the Min-Uncut case, and 2−nε in the Min-2-CC case. Consider the

clustering D = {{x, y}, Z}. It has cost 1 in the Min-Uncut case, and thus is a very

good approximation (for ε small). However, the Min-2-CC cost of D is n+ 1 + nε,

which is far greater than the Min-2-CC cost of C. So D is good approximation

for C in the Min-Uncut case, but is not even close for the Min-2-CC case, even

though the cluster sizes differ only slightly from the optimum.

What does all this mean for Indyk’s algorithm? Suppose that C is the optimal

Min-k-CC solution. Then, again assuming we guess the cluster sizes and relevant

representatives of C, we can find a clustering D that is a good Min-k-Uncut ap-

proximation to C. But are the cluster sizes the same? Can we use Remark 5 and

Lemma 15? Let us consider the cases as stated above.

1. Clusters close. Here Indyk uses the metric Max-CutPTAS. It turns out

(see Lemma 15) that a Max-CC PTAS would also work. We will supply such

a PTAS in Section 5.3.

2. Clusters far, very different sizes. As Unbalanced Cut gets cluster sizes

exactly right, then as we stated above, Lemma 15 will mean that D is a good

Min-CC approximation.

3. Clusters far, similar size. Unfortunately Balanced Cut does not get

cluster sizes exactly right. However, we can apply the following procedure to

rebalance the clusters:

151

5.3 A PTAS for Dense Max-k-CC Sampling

Algorithm: Re-Balance

Guess the number of points incorrectly placed in cluster D1,

f21 = |F21| F21 = D1 ∩ C2 (5.5)

Let G21 be the f21 points in D1 which minimise δ̂2. Define F12, f12, G12

similarly.

Output D2, where

D2
1 = D1 +G12 −G21 D2

2 = D2 +G21 −G12

Our guessing of the correct sizes for each Gij (which approximate Fij) means

that, clearly, |D2
i | = |Ci|. We can show (see Lemma 5) that D2 is a good

Min-Uncut approximation to C. Again, we are finished, using the all impor-

tant Lemma 15.

So we can see, modulo a PTAS for metric-Max-k-CC, which we will supply

presently, we have a PTAS for the k = 2 case of metric-Min-k-CC. In Section 5.4,

we will outline an algorithm that expands this to the full Min-k-CC case.

5.3 A PTAS for Dense Max-k-CC

Let us pause for a moment and consider a slightly wider set of Max-k-CC problems.

We will drop the metric (triangle inequality) requirement, but retain the need for

probability constraints. For the Max-k-CC problem, let us call a graph instance

dense if the number of edges is in Ω(n2). Since the expected value of a random

solution to Max-k-CC, with probability constraints, using only 2 clusters, is |E|/2,

we know that Max-k-CC∗ is in Ω(n2) in dense instances. Note that for metric

problems |E| is implicitly
(
n
2

)
.

Consider again (5.1a) and (5.1b), and the reliance on cluster size. However, if

we can define Max-k-Cut with negative weights, we can then represent the Max-

k-CC cost of a clustering C in terms of Max-k-Cut in a clustering independent

way.

152

Sampling 5.3 A PTAS for Dense Max-k-CC

Remark 6. Let G = (V,E,w) be a weighted graph. Define Ĝ = (V,E, ŵ), where

ŵ = 2w − 1. Then, for any k-clustering C:

Max-k-CC(G, C) = Max-k-Cut(Ĝ, C) + |E| −W

Proof.

Max-k-CC(G, C) = Max-k-Cut(G, C) + eu(C)−Min-k-Uncut(G, C)

= Max-k-Cut(G, C) +
[
|E| − ec(C)

]
+
[
Max-k-Cut(G, C)−W)

]
= 2 Max-k-Cut(G, C)− ec(C) + |E| −W

=
∑

e∈Ec(C)

(2w(e)− 1) + |E| −W

= Max-k-Cut(Ĝ, C) + |E| −W

Remark 6 tells us, for instance, that the optimal solution to Max-k-Cut on Ĝ

is the same as the optimal solution of Max-k-CC on G. This observation is key to

our applying the following theorem to our problem.

Theorem 3 (Frieze and Kannan [49], Theorem 1). There is an algorithm, which

we refer to as FK, that given a graph Ĝ = (V,E, ŵ), with weight function ŵ : E →
[−1, 1], and a fixed ε > 0, computes in polynomial time a k-clustering C such that:

Max-k-Cut(C) ≥Max-k-Cut∗−εn2

Corollary 5. If |E| ∈ Ω(n2), then algorithm FK provides a PTAS for Max-k-CC.

Proof. Let C be the solution returned by algorithm FK, run on Ĝ, and C∗ be the

optimal solution to Max-k-CC. Then, by Remark 6,

Max-k-CC∗ −Max-k-CC(C) = Max-k-Cut(Ĝ, C∗)−Max-k-Cut(Ĝ, C)

≤Max-k-Cut(Ĝ)∗ −
[
Max-k-Cut(Ĝ)∗ − εn2

]
= εn2

153

5.4 A PTAS for Metric Min-k-CC Sampling

and we are done, since Max-k-CC* is in Ω(n2).

Frieze and Kannan’s algorithm runs in time α(ε)M(n)β(ε), where α(ε) = O(ε−20),

M(n) is the time to multiply two n × n 0/1 matrices, and log log β(ε) ≤ c1 log(1/ε)
ε8

,

for some constant c1.

5.4 A PTAS for Metric Min-k-CC

In this section, we will outline the PTAS for the metric-Min-k-CC problem. We

will begin by outlining the operation of the PTAS for metric-Min-k-Uncut of

Fernandez de la Vega et al. [43], as our PTAS expands that algorithm, and requires

much of the same terminology. We will also report the relevant sections of their

analysis which we will use to analyse our algorithm.

5.4.1 The PTAS of Fernandez de la Vega et al.

We call the algorithm of Fernandez de la Vega et al. the FKKR algorithm. This

algorithm is a generalisation of Indyk’s algorithm, which we described above, to

k > 2 clusters. The underlying idea, of exploiting well-separatedness of clusters,

remains, however, things are more difficult when there are more than two clusters.

In this section we will be focused exclusively on the Min-k-Uncut objective.

Indyk’s algorithm had three scenarios to deal with. The three scenarios depended

on the configuration of the optimal solution for the Min-k-Uncut problem, which,

in this section we’ll term C.1 The scenarios that Indyk outlined depended on two

qualities of the clusters in C; the closeness of the clusters, and the size of the clusters.

Let us be precise about what these mean.

Cluster Size. Let ni = |Ci|, and let us assume without loss of generality that

n1 ≥ n2 ≥ · · · ≥ nk. Since we are describing a PTAS, we have been given an ε.

Indyk only needed to know if n1 ≥ ε n2, however in the general case a very technical

definition of large and small is required. Let Ij = (εj+1, εj], and let j0 < k2 be the

1In the analysis of our algorithm, C is the optimal solution to the Min-k-CC problem. Here it
is the optimal solution to Min-k-Uncut. We use the same symbol, as our algorithm treats the
Min-k-CC optimum much the same as FKKR treats the Min-k-Uncut optimum.

154

Sampling 5.4 A PTAS for Metric Min-k-CC

minimum j such that for every i, i′, the ratio ni/ni′ /∈ Ij.Let M = n1, be the size of

the largest cluster. Let k0 = argmini ni ≥ εj0n1.

Definition 18. A cluster Ci is large if i ≤ k0 and small otherwise.

The set S is the union of the small clusters: ∪i>k0Ci. Finally, m = nk0 , the size

of the smallest large cluster, while s = nk0+1, the size of the largest small cluster.

We can see by the above definition that s = O(ε)m.

Representatives Large clusters are of particular interest. Firstly, they contribute

the majority of the cost of C, and thus approximating them well is of prime impor-

tance. Secondly, it is easy to find representatives of them:

Lemma 9 (F. de la Vega et al., Lemma 5). For each i ≤ k0, let ci be chosen

uniformly at random, and independently, from V . Then with probability at least

[εj0/(2k)]k: each ci chosen is a representative of Ci.

Representatives are useful because we can use a representative ci to estimate the

distance from any point to the optimal cluster Ci. Assuming C is fixed, let us define,

for i ≤ k0,

Definition 19.

δi(v) = δ(v, Ci) δ̂i(v) = ni δ(v, ci) (5.6)

Then Lemma 8 tells us that, up to a small error, δ̂i is a good stand-in for δi. Or,

precisely ∣∣∣δ̂i(v)− δi(v)
∣∣∣ ≤ 2

m
Min-k-Uncut(C) . (5.7)

Separating Large Clusters From Small

Indyk demonstrated that when one cluster was large and the other small, the Un-

balanced Cut algorithm was sufficient to solve the problem. That is, we can

easily find a representative ci for the large cluster Ci, and then choose the closest ni

points to ci. This works because it does not matter significantly which points end

up the small cluster, and (5.7) tells us that using the representative is sufficiently

accurate.

155

5.4 A PTAS for Metric Min-k-CC Sampling

In the full FKKR algorithm, Fernandez de la Vega et al. use the same idea in

order to separate out the small clusters in Step 5.4.1.

Separating Two Large Clusters

When separating two large clusters, Ci and Cj, what is important is whether the

clusters were well-separated. We can make this explicit with the concept of close

clusters. We say two large clusters are close if

δ(Ci, Cj) ≤ β
[
δ(Ci) + δ(Cj)

]
, (5.8)

where β = M/(mε).

If two clusters are close, then a metric-Max-k-Cut PTAS can separate them

well. This is due to the following fundamental fact about maximisation/minimisa-

tion:

Remark 7. Let Max-X and Min-Y be complementary problems; that is, for any

graph G, Max-X(X) + Min-Y(X) is constant over all solutions X . If

f(ε) Max-X∗ ≤Min-Y∗ , (5.9)

then a (1−g(ε))-approximate solution to Max-X will be a (1+g(ε)/f(ε))-approximate

solution to Min-Y.

Proof. Let X be such that Max-X(X) ≥ (1− g(ε))Max-X∗. Then, as Max-X and

Min-Y are complementary, we know

Max-X(X) + Min-Y(X) = Max-X∗ + Min-Y∗ .

So,

Min-Y(X) = Min-Y∗ + Max-X∗ −Max-X(X)

≤Min-Y∗ + g(ε)Max-X∗

≤Min-Y∗ + (g(ε)/f(ε)) Min-Y∗

156

Sampling 5.4 A PTAS for Metric Min-k-CC

This leads in a straightforward way to a comment about PTASes:

Corollary 6. Let Max-X and Min-Y be complementary problems, with

f(ε) Max-X∗ ≤Min-Y∗ ,

Then if, for any ε, Aε is a (1+ ε)-approximation algorithm for Max-X, then for

any ε, Aεf(ε) is a (1 + ε)-approximation algorithm for Min-Y.

So, if two clusters are close, (5.8) provides an example of (5.9), letting us apply

Corollary 6 to the metric-Max-k-Cut PTAS.

Indyk had demonstrated that Balanced Cut is sufficient to separate two large

clusters that are not close. This is due to the fact that such clusters have a good

separation; so using representatives as an approximation to cluster distance—using

(5.7)—does a good enough job. In the multiple cluster case, however, there is an

added difficulty.

Groups of Large Clusters

Suppose clusters Cx and Cy are close, as are Cy and Cz. However, suppose Cx and

Cz are not close. We could separate Cx and Cz via the Balanced Cut algorithm.

However, the addition of Cy will confuse this algorithm. In fact, it turns out that

a metric-Max-k-Cut PTAS will be able to separate these three. We need only

use Balanced Cut to separate clusters that are not only not close, but also not

connected by a series of close clusters.

To make this explicit, we need the concept of large cluster groups. Let us define

an equivalence relationship ≡ on the cluster indices, so that i ≡ i′ if there is a

sequence of indices x1 = i, x2, . . . , x` = i′, such that Cxz and Cxz+1 are close for all

z < `. We can use this equivalence relationship to find a group mapping function

g : [k]→ {0, 1, . . . , γ}, where γ is the number of equivalence classes, and g(i) = g(i′)

if i ≡ i′. We let g(i) = 0 for all i > k0, and define mj = |g−1(j)| for j ∈ [γ]0. For any

clustering X , let the restriction of X to group j, X|j be the (clustering) function X
on the domain {v : g(X (v)) = j}.

It is important to know when two clusterings make the same decisions about

groups, but perhaps differ within them.

157

5.4 A PTAS for Metric Min-k-CC Sampling

Definition 20. We say two clusterings X and Y are g-equivalent if for all v ∈ V ,

g(X (v)) = g(Y(v)) .

The following lemma, proved by Fernandez de la Vega et al., demonstrates that

a group can be approximated by a metric-Max-k-Cut PTAS, with an application

of Remark 7:

Lemma 10 (F. de la Vega et al.). Let j ∈ [γ] be a group of large clusters. Then

O(ε)Max-mj-Cut(C|j) ≤Min-mj-Uncut(C|j)

The FKKR algorithm

We are now in a position to detail the FKKR algorithm. The algorithm operates

in 4 phases:

Algorithm: FKKR

Phase Zero: Guess the values of all ni, i ∈ [k], and the group mapping

function g, and guess the ci, i ∈ [k0], as in Lemma 9.

Phase One: Define the clustering D1 : V → [k0] as follows:

D1(v) = argmin
i≤k0

δ̂i(v) .

Define the (unknown) Fii′ to be Ci∩D1
i′ , and let fii′ stand for |Fii′ |.

Phase Two: Guess fii′ for all i > k0 small, and let f(v) =

mini≡C(v) δ(ci, v). For each large group j ∈ [γ], remove the∑
i:g(i)=j
i′:g(i′)=0

fi′i elements with smallest f values from clusters in j, and

place them in arbitrary small clusters.

Phase Three: For each group j ∈ [γ]0, let G2
j = {v : g(D2(v)) = j}.

For j ∈ [γ], partition G2
j into mj clusters using a dense-Max-k-Cut

PTAS. Partition G0 into k − k0 clusters, by (recursively) applying

the algorithm in this section.

158

Sampling 5.4 A PTAS for Metric Min-k-CC

This algorithm runs in time O(f(k, ε)n3k), where f(k, ε) = O(exp((1/ε)k
2
)).

Analysis of the FKKR Algorithm

We provide some important elements of Fernandez de la Vega et al.’s analysis, as

they will prove useful in our own work.

Consider a clustering C1 that is a compromise between D1 and C. Its small

clusters are the same as those in C. Its large clusters are the same as those in D1,

except that the points in S have been removed, and within each group, points are

clustered as they are in C.
That is,

C1(v) =

C(v) if D1(v) ≡ C(v) or g(C(v)) = 0 ,

D1(v) otherwise .

Fernandez de la Vega et al. show the following results:

Proposition 4 (F. de la Vega et al. Prop. 9).

Min-k-Uncut(C1) ≤
(
1 +O(ε)

)
Min-k-Uncut(C) .

Lemma 11 (F. de la Vega et al. Lemma 11). For i, i′ ≤ k0 and i′ 6≡ i, |Fii′ | ≤ O(ε)m.

Theorem 4 (F. de la Vega et al.). The algorithm FKKR is PTAS for the metric-

Min-k-Uncut problem.

5.4.2 Our Algorithm

We now assume that C is an optimal solution to the Min-k-CC problem on some

graph G. So Min-k-CC∗ = Min-k-CC(C). We will be interested in the Min-k-

Uncut cost of C—in fact we will use part of the FKKR algorithm to approximate

it—so let the symbol c∗ stands for
∑

i δ(Ci) = 2 Min-k-Uncut(C).
Our algorithm operates in a number of phases, similar to the FKKR algorithm.

Phase Zero: Guess the values of all ni, i ∈ [k], and the group mapping function g,

and guess the ci, i ∈ [k0], as in Lemma 9.

159

5.4 A PTAS for Metric Min-k-CC Sampling

Phase One: Define the clustering D1 : V → [k0] as follows:

Let D1(v) = argmini≤k0 δ̂i(v). Define the (unknown) Fii′ to be Ci ∩ D1
i′ , and

let fii′ stand for |Fii′ |.

Phase Two: Define the clustering D2, by solving a Bipartite Matching prob-

lem:

1. Guess all fii′ for each i ∈ [k] and each i′ ∈ [k0].

2. Define a weighted bipartite graph as follows: Let L = V , and

R =
⋃

i∈[k],i′∈[k0]

{fii′ vertices, each labelled Gii′}

Ẽ consists of an edge between each x ∈ L = V , and each vertex in R

labelled GiD1(x), for each i ∈ [k], with weight w̃(e) = δ̃i(x).

3. Solve Bipartite Matching, on G̃(L∪R, Ẽ, w̃) to get a perfect match-

ing. Let D2(x) = i if x ∈ L is matched to an element labelled GiD1(x).

Phase Three: For each group j ∈ [γ]0, let G2
j = {v : g(D2(v)) = j}. For j ∈

[γ], partition G2
j into mj clusters using the Max-k-CC PTAS of Section 5.3.

Partition G0 into k − k0 clusters, by (recursively) applying the algorithm in

this section.

5.4.3 The Analysis

We analyse the progress by comparing the clusterings actually obtained with some

nearer-optimal, though unknown, clusterings called C1 and C2.

Balanced Cut: D1 and C1

Phases Zero and One are identical to those phases from FKKR. Thus, if we form

C1 as we did in Section 5.4.1, we can follow Fernandez de la Vega et al.’s analysis

through2 and find that Proposition 4 and Lemma 11 hold, for this particular C.
2Note that Fernandez de la Vega et al.’s analysis does not rely in any way on C being the

optimal solution to the Min-k-Uncut problem.

160

Sampling 5.4 A PTAS for Metric Min-k-CC

Re-balancing: D2 and C2

Phase Two serves two purposes. First, we separate the points that we believe should

go in small clusters from those which we believe should be in large clusters. Second,

we force the clusters to have the same sizes as the (guessed) optimum solution sizes

{ni}. This algorithm relies on techniques for the Min-k-Uncut problem to provide

a good solution to the Min-k-CC problem. Referring back to Remark 5, if the

clusters sizes are the same, then optimality of one problem implies optimality of the

other.

By the construction of Phase Two, the clusters in D2 are the correct sizes. We

need to show that there exists a clustering, C2, that also has correct sizes, but is a

good Min-k-Uncut approximation to C. Define Gii′ to be D2
i ∩D1

i′ . The elements

of Gii′ are the vertices that move from cluster i′ to cluster i in Phase Two. By

definition, |Gii′ | = fii′ = |Fii′ |. Indeed, Gii′ is our attempt at finding Fii′ ; if we had

Gii′ = Fii′ for all i, i′, we would have D2 = C.

Pairing functions For each (i, i′), the sets Fii′ and Gii′ are of the same size. We

can therefore find a pairing function p (a bijection) between them. There are many

choices of such pairing functions, but we will choose one that has the following

property.

Definition 21. A pairing function p has small-loops, if, for each v ∈ Ci, the orbit

of v (the set of points reachable from v by repeated application of p) enters each Gii′

at most once for each i ∈ [k].

Remark 8. There exists a pairing function p with small-loops.

Proof. It is simple to find such a pairing function; suppose we have a pairing function

p such that v1, v2 ∈ Gi′i are in the same orbit. That is, px(v1) = v2 for some x. Then,

as v1, v2 are both in Gi′i, there are two nodes w1, w2 ∈ Fi′i such that p(w1) = v1 and

p(w2) = v2. Then we can define a new pairing function p′ such that p′(w2) = v1,

p′(w1) = v2, and p′(w) = p(w) otherwise.

The procedure is demonstrated in Figure 5.2.

After this change, p′ is still a pairing function, and v1 and v2 are now on separate

orbits (v1 on a loop of length x). Repeated application of the above procedure

161

5.4 A PTAS for Metric Min-k-CC Sampling

Gi’i
w1

v1

v2

w2

p

p
p i−1

(a) Pairing function p: v1 and
v2 are on the same orbit, yet
both in Gi′i.

Gi’i
w1

v1

v2

w2

p

pp i−1

(b) Pairing function p′: v1 and
v2 are now on two distinct or-
bits.

Figure 5.2: Changing a pairing function p to p′ in order to make smaller loops.

will lead to a pairing function with small-loops. Since points that were not on the

same orbit before the procedure are not on the same orbit after the procedure, the

repeated application must terminate.

Some properties of small-loop pairing functions p are immediate. Each vertex

v ∈ Fii′ ∩ Gii′ has p(v) = v; that is, each value D2(v) is unique in a given orbit.

Consequently, every orbits must be of length at most k. Note also, from the defini-

tion, that an orbit is a subset of some D1
i , all D1(v) values are the same, and that

D2(p(v)) = C(v), a fact that will be used often.

Definition 22. An orbit o is group-contained if for all v ∈ o, C(v) ≡ D1(v).

By definition, C1(v) = C(v) for all v in a group-contained orbit, and it is not

hard to show that D2(v) ≡ C(v) for all v in the orbit too. Let us denote the vertices

not in group-contained orbits by V1.

We are now in a position to define C2 precisely:

C2(v) =

D2(v) if v ∈ V1,

C(v) otherwise.

Remark 9. The size of the set V1 is in O(εm).

Proof. By definition, each non-group contained orbit has some vertex with D1(v) 6≡
C(v), that is, in Fii′ with i 6≡ i′. From Lemma 11, we know that

∑
i 6≡i′ |Fii′| ∈

162

Sampling 5.4 A PTAS for Metric Min-k-CC

O(k2εm), if i, i′ ≤ k0. In addition, if i > k0, then |Fii′| ≤ |Ci|, as it is a subset, and

this is less than m. Each (small-loop) orbit has at most k vertices, which proves the

Remark.

Remark 10. C2 is g-equivalent to D2.

Proof. Clearly points in V1 are g-equivalent. If v ∈ V0, then we know by definition

that

D2(v) = C(p−1(v)) ≡ D1(p−1(v)) = D1(v) ≡ C(v) = C2(v) .

Remark 11. Without loss of generality, if g(C(v)) = g(D2(v)) = 0, then C(v) =

D2(v).

Proof. Suppose this is not the case for some v satisfying g(D2(v)) = g(C(v)) = 0,

but not D2(v) = C(v). We will define a new optimal solution to the Bipartite

Matching problem, D2′ , which is g-equivalent to D2. Repeating in this fashion for

all v failing the condition will lead to a clustering that satisfies Remark 11. Define

D2′ identically to D2, except let D2′(v) = C(v), which is of course D2(p−1(v)), and

D2′(p−1(v)) = D2(v). Thus v and p−1(v) are exchanging roles. We can then reduce

p to regain the small-loops property. As g(D2(v)) = g(D2′(v)) = 0 the assignment

cost in the Bipartite Matching is unchanged, so D2′(v) is an optimal solution.

Moreover, D2′ is g-equivalent to D2, and has clusters of the same sizes as D2. So

none of the later of the analysis will be affected, and we assume D2 has the required

property.

Corollary 7. No orbit has two consecutive nodes mapped to small clusters by C.

Proof. Suppose that g(C(p−1(v))) = g(C(v)) = 0 for some v 6= p(v). This would

imply that g(D2(v)) = 0 also, and therefore from Remark 11, that D2(v) = C(v).

Finally, this implies D2(v) = D2(p(v)), which breaks the small loops property.

The Cost of C2

We will now state a vital Lemma, which is a simple consequence of the fact that D2

was the result of an optimal solution to the Bipartite Matching problem we set

up in Phase Two.

163

5.4 A PTAS for Metric Min-k-CC Sampling

Lemma 12. ∑
v∈V1

δ̃D2(v)(v) ≤
∑
v∈V1

δ̃C(v)(v)

Proof. To prove this, we appeal to the optimality of D2 as a solution to the Bipar-

tite Matching problem on G̃. Consider another solution to Bipartite Match-

ing, µ, defined as µ(v) = C(v) for v ∈ V1 and µ(v) = D2(v) otherwise. This function

indeed provides a matching, as C(v) = D2(p(v)) for any v, and no orbit enters or

leaves V1. So, considering the costs of the two matchings, as D2 is optimal, and only

differs from µ on V1, the lemma follows.

We can use this fact, along with properties of the choice made in Phase One,

to show that the vertices that we mistakenly move in Phase Two are close to the

vertices we should have moved.

Lemma 13. ∑
v∈V1

δ(v, p(v)) ≤ O(1)
c∗

m

Proof. If v is in a orbit of length one, p(v) = v, and v contributes 0 to the above

sum.

Otherwise, recall that D1(v) = D1(p(v)), so an application of the triangle inequality

and the definition of δ̂ gives

δ(v, p(v)) ≤ 1

nD1(v)

[
δ̂D1(v)(v) + δ̂D1(p(v))(p(v))

]
Since p(v) 6= v, C(v) = D2(p(v)) 6= D2(v), so we apply the contrapositive of Re-

mark 11 to learn that either C(v) or D2(v) is in [k0].

Now, the choice of the algorithm in Phase One means that δ̂D1(v)(v) ≤ δ̂i(v) for

every i ∈ [k0]. This means that we can bound δ̂D1(v)(v) above by δ̃C(v)(v) + δ̃D2(v)(v),

as at least one of these terms is actually a δ̂. Therefore,

∑
v∈V1

δ(v, p(v)) ≤ 1

m

∑
v∈V1

[
δ̃C(v)(v) + δ̃D2(v)(v) + δ̃C(p(v))(p(v)) + δ̃D2(p(v))(p(v)) .

]
164

Sampling 5.4 A PTAS for Metric Min-k-CC

Recall that v ∈ V1 ⇒ p(v) ∈ V1, so we have an upper bound of

∑
v∈V1

δ(v, p(v)) ≤ 2

m

∑
v∈V1

[
δ̃C(v)(v) + δ̃D2(v)(v)

]
.

From Lemma 12, we know that this is at most

4

m

∑
v∈V1

δ̃C(v)(v) =
4

m

∑
v∈V1,g(C(v))6=0

δ̂C(v)(v) ≤ 4

m

 ∑
v∈V1,g(C(v)) 6=0

δC(v)(v) + |V1|
2c∗

m

 ,

by Lemma 8. Recalling Remark 9, and the fact that c∗ =
∑

v∈V δC(v)(v), the proof

is complete.

Definition 23. For each i, let Ini = C2
i \ Ci, and Outi = Ci \ C2

i , so that C2
i =

Ci + Ini−Outi.

Remark 12. Outi = {p−1(v) | v ∈ Ini}, and so |C2
i | = |Ci|.

Proof. Let X = {p−1(v) | v ∈ Ini}. If v ∈ Ini, then C2(v) = i 6= C(v) and v is not

in a group-contained orbit. Let u = p−1(v), then u ∈ X, and C(u) = D2(p(u)) =

D2(v) = C2(v) = i, which also implies u 6= v. On the other hand, C2(u) 6= C2(v) = i,

by the small-loops property, so u ∈ Outi. Consequently, X ⊆ Outi. A similar

argument in the other direction shows that Outi ⊆ X.

Lemma 14.

δ(C2
i)− δ(Ci) ≤ 2 [δ(Ci, Ini)− δ(Ci,Outi)] +O(ε)c∗ .

Proof. Expanding δ(C2
i) gives

δ(C2
i) = δ(Ci) + 2 [δ(Ci, Ini)− δ(Ci,Outi)] +

[δ(Ini)− δ(Ini,Outi)] + [δ(Outi)− δ(Outi, Ini)]

165

5.4 A PTAS for Metric Min-k-CC Sampling

Consider the second-last term,

δ(Ini)− δ(Ini,Outi) =
∑
u∈Ini

[δ(u, Ini)− δ(u,Outi)]

=
∑
u∈Ini

∑
v∈Outi

[δ(u, p(v))− δ(u, v)]

≤
∑
u∈Ini

∑
v∈Outi

δ(v, p(v)) (triangle inequality)

≤ |V1|
∑
v∈V1

δ(v, p(v)) (Ini,Outi ⊆ V1)

≤ O(ε)c∗ . (Remark 9 and Lemma 13)

We can bound the final term in the same way, which completes the proof.

Remark 13. ∑
i∈[k]

δ(Ci, Ini)− δ(Ci,Outi) =
∑
v∈V1

[
δC2(v)(v)− δC(v)(v)

]
Proof. From Remark 12,∑

i∈[k]

δ(Ci, Ini)− δ(Ci,Outi) =
∑
i∈[k]

∑
v∈Ini

[
δi(v)− δi(p−1(v))

]
=
∑
i∈[k]

∑
v∈Ini

[
δC2(v)(v)− δC(p−1(v))(p

−1(v))
]

For a vertex u in V1 that is not in some Ini, p(u) = u, so the corresponding term

inside the brackets above is zero. Therefore the right hand side is, after separating

the terms,∑
v∈V1

δC2(v)(v)−
∑
v∈V1

δC(p−1(v))(p
−1(v)) =

∑
v∈V1

δC2(v)(v)−
∑
v∈V1

δC(v)(v) ,

as v ∈ V1 implies p−1(v) ∈ V1.

Theorem 5. C2 is a (1+O(ε)) approximation to C in terms of Min-k-Uncut cost.

166

Sampling 5.4 A PTAS for Metric Min-k-CC

Equivalently, ∑
i

δ(C2
i) ≤ (1 +O(ε))c∗ .

Proof. From Lemma 14 and Remark 13,∑
i

δ(C2
i) ≤

∑
i

δ(Ci) +O(ε)c∗ +
∑
v∈V1

[
δC2(v)(v)− δC(v)(v)

]
Now, ∑

v∈V1

g(C2(v))6=0

δC2(v)(v)−
∑
v∈V1

g(C(v)) 6=0

δC(v)(v)

≤
∑
v∈V1

g(C2(v)) 6=0

δ̃C2(v)(v)−
∑
v∈V1

g(C(v))6=0

δ̃C(v)(v) + |V1|
4c∗

m
∈ O(εc∗) ,

from Lemma 8, Lemma 12, and Remark 9. In contrast,∑
v∈V1

g(C2(v))=0

δC2(v)(v)−
∑
v∈V1

g(C(v))=0

δC(v)(v) =
∑
v∈V1

g(C(v))=0

δC(v)(p(v))−
∑
v∈V1

g(C(v))=0

δC(v)(v)

Now, Proposition 3 shows that δC(v)(p(v))− δC(v)(v) ≤ |CC(v)|δ(v, p(v)), so∑
v∈V1,g(C(v))=0

[
δC(v)(p(v))− δC(v)(v)

]
≤

∑
v∈V1,g(C(v))=0

|CC(v)|δ(v, p(v))

≤ O(1)
s

m
c∗+ ≤ O(ε)c∗ ,

where the final inequality follows from Lemma 13 and the facts that |CC(v)| ≤ s and

s ≤ mε.

Analysing Phase Three.

At the conclusion of Phase Two, we have a clustering D2 that is g-equivalent to C2,

a (1 + O(ε))-approximation to C in Min-k-Uncut terms. Moreover, D2, C2 and C
all have clusters of the same sizes. We now show that D3, the outcome of Phase

167

5.4 A PTAS for Metric Min-k-CC Sampling

Three, is a (1 +O(ε))-approximation to C in Min-k-CC terms.

Lemma 15. If f(ε) satisfies Min-k-Uncut(C2) ≤ (1 + f(ε)) Min-k-Uncut(C),

then

Min-k-CC(C2) ≤ (1 + 2f(ε)) Min-k-CC(C) .

Proof. Note that, for any clustering X :

Min-k-CC(X) = Min-k-Uncut(X) + ec(X)−Max-k-Cut(X)

= 2 Min-k-Uncut(X) + ec(X)−W

Consider

Min-k-CC(C2)−Min-k-CC(C) = 2
(
Min-k-Uncut(C2)−Min-k-Uncut(C)

)
+ ec(C2)− ec(C)

≤ 2f(ε) Min-k-Uncut(C))

= f(ε) [Min-k-CC(C)− (ec(C)−W)]

≤ 2f(ε) Min-k-CC(C) .

The last inequality above follows from this reasoning

W − ec(X) = Min-k-Uncut(X) + Max-k-Cut(X)− ec(X)

= Min-k-Uncut(X) + ec(X)−Max-k-Cut(X)

− 2(ec(X)−Max-k-Cut(X))

≤Min-k-CC(X) ,

which is a consequence of Max-k-Cut(X) =
∑

e∈Ec(X) δ(e) ≤
∑

e∈Ec(X) 1 = ec(X).

Lemma 15 tells us that C2 is a (1 + O(ε))-approximation to C in Min-k-CC

cost. Of course, C2 is unknown; however, it is a candidate solution that Phase Three

could find. If Phase Three did a perfect job, it would find at least a (1 + O(ε))-

approximation to C.
We now need to show that the approximate solutions that Phase Three obtains

168

Sampling 5.4 A PTAS for Metric Min-k-CC

on groups are sufficient for our purposes. Recall that g is a partitioning of [k] into

γ groups, with mj = |g−1(j)|.

Lemma 16. Suppose X and Y are g-equivalent clusterings. If for each j,

min-mj-CC(X|j) ≤ (1 + f(ε)) min-mj-CC(Y|j)

Then, over all of V ,

Min-k-CC(X) ≤ (1 + f(ε)) Min-k-CC(Y) .

Proof. Note that

Min-k-CC(X) =
∑
j∈[γ]

min-mj-CC(X|j) +
∑

X(u)6≡X (v)

(1− δ(u, v)) ,

and similarly for Y . The g-equivalence of X and Y tells us that the rightmost

summation is common to both clusterings, leading to the statement of the lemma.

By construction, D3 is equivalent to D2, which is equivalent to C2 by Remark 10.

Corollary 8. Suppose that D3|j is a (1+O(ε))-approximation to the optimal solution

to Min-mj-CC over G2
j . Then D3 is a (1 +O(ε))-approximation to Min-k-CC on

G.

It remains to show that, indeed, D3 is a good solution over each group. For

the group of small clusters, j = 0, we just recurse the Min-k-CC algorithm; since

|G2
0| ≤ ε|V |, we can apply an inductive argument.

We will now show that the Max-mj-CC PTAS of Section 5.3 provides a good

Min-mj-CC solution on a group of large clusters. We would like to apply Lemma 10

immediately, but we need to find a similar result for Max-k-CC and Min-k-CC.

Lemma 17. Let C be a clustering of G. Let M = maxi |Ci|. Suppose that, for all i,

|Ci| ≥ f(ε)M , and that

g(ε) Max-k-Cut(C) < Min-k-Uncut(C) , (5.10)

169

5.4 A PTAS for Metric Min-k-CC Sampling

then
f 2(ε)g(ε)

2
Max-k-CC(C) < Min-k-CC(C) . (5.11)

Proof. For convenience, let

X = Max-k-Cut(C) W = ec(C)−X

Y = Min-k-Uncut(C) Z = eu(C)− Y ,

all positive quantities. Also, let f stand for f(ε) and g for g(ε). Then

X +W = ec(C) =
∑
i<j

|Ci||Cj| ≥
∑
i<j

f 2M2 ≥ f 2M
2k

2

And

Y + Z = eu(C) =
∑
i

(
|Ci|
2

)
≤
∑
i

(
M

2

)
= k

(
M

2

)
≤ M2k

2

Combining these, we have,

X +W ≥ f 2(Y + Z) ≥ f 2Z (5.12)

Consider the following:

f 2g(X + Z)− 2(Y +W)

= g(f 2Z) + f 2gX − 2(Y +W)

≤ g(X +W) + f 2gX − (f 2 + 1)Y − 2W by (5.12), and f ≤ 1

= (f 2 + 1)(gX − Y) + (g − 2)W < 0 as gX < Y , and g ≤ 1,

which completes the proof.

Corollary 9. Let C|j be the optimal solution to Max-mj-CC on G2
j , where j > 0.

Then a (1−O(ε))-approximate solution to Cj on G2
j will be a (1+O(ε))-approximate

solution to Min-mj-CC∗ on G2
j

Proof. Each large cluster Ci has |Ci| ≥ ej0M . Applying Lemma 10 and Lemma 17,

we see that

Max-mj-CC(C|j) < Ω(
1

ε
)Min-mj-CC(C|j)

170

Sampling 5.5 Conclusion

The Ci are optimal (on groups) so the above equation describes the relation between

optimal solutions. An application of Remark 7 completes the proof.

Theorem 6. The algorithm in Section 5.4 is a PTAS for the Min-k-CC problem.

Proof. Combining Corollary 9, Corollary 8, and the PTAS of Section 5.3 for metric-

Max-k-CC, we have the required bound on the quality of the solution of D3. The

running time of the algorithm is polynomial, as it is the combination of PTASes, the

guessing of O(k) values, and the solution of a Bipartite Matching problem.

Note that our algorithm will call the FK Max-k-Cut PTAS once for each

guess—it makes a total of O(n3kk2) guesses, and passes a ε value of ε′ = ε3j0+3/90k18

through to that algorithm.

5.5 Conclusion

This chapter has described a PTAS for each of the maximisation and minimisa-

tion versions of metric-k-Correlation Clustering, a generalisation of the k-

Consensus Clustering problem. The minimisation PTAS is of particular in-

terest as both the unrestricted Consensus Clustering problem is known to be

APX-hard. Until now, the 0/1 k-Correlation Clustering problem had been

the only minimisation problem in the Correlation Clustering family known to

have a PTAS.

171

Chapter 6

Conclusions

In this thesis, we have studied a number of combinatorial optimisation problems

that share the common theme of advice. These problems asked us to take a graph,

representing local pair-wise information about how vertices should be organised, and

construct a global organisation (either a clustering or a ranking of the data).

In Chapter 3 we described the concept of relaxation; taking such a combinato-

rial problem and considering a non-integral version. We highlighted two particular

techniques—the general method of semi-definite programming and the clustering-

specific approach called Spectral Clustering. We considered how to apply such

techniques to the Affinity Clustering problem when advice was incorporated.

We described a series of algorithms which attempt to respect the advice to varying

degrees without compromising the quality or running-time of the original relax-

ations. We conducted a series of experiments to conclude that these algorithms can

out-perform algorithms which ignore the advice, or treat it naively.

In Chapter 4 we considered both local-search algorithms, and algorithms inspired

by local-search, for two problems, Min Feedback Arc Set and Min-2-CC. We

discovered algorithms which were as good as, or better than, the state of the art

for these problems, and were able to demonstrate that some algorithms were not

good approximators. Significantly, we proved that the PASTA-toss algorithm is a

2-approximation for the Min-2-CC problem on complete graphs.

In Chapter 5 we provide a polynomial time approximation scheme for the k-

Consensus Clustering problem, a specialisation of the metric k-Correlation

173

Conclusions

Clustering problem. This is an important development for the Consensus Clus-

tering problem, which was recently shown to be APX-hard for un-constrained

minimisation. In doing so, we developed new techniques for ensuring correct cluster

sizes based on finding matchings, which could have application to a variety of other

restricted clustering problems.

Reflections

This thesis has demonstrated the strength of three key approaches for solving op-

timisation problems that incorporate advice: relaxation, local-search and sampling.

These three approaches span the full range of perspectives we have chosen to focus

on in this thesis.

Relaxation, especially to a spectral problem, is a very time-efficient and prac-

tically effective method of solving complex combinatorial problems. Although we

have seen that relaxations to semi-definite programs can be (and often are) used to

provide algorithms with approximation guarantees, the spectral relaxation is pre-

ferred due to its real-world performance, not its theoretical properties. Certainly a

spectral algorithm with a performance guarantee would be a major breakthrough.

Local-search is another approach which is used more traditionally by the practi-

cal camp; however, one success of this thesis has been to find a local-search algorithm

which not only performs well in practice, but also has an interesting guarantee. We

anticipate that the method of seeding local-search algorithms with well chosen start-

ing solutions could provide the theoretical community with further approximation

algorithms that perform well in practice.

The sampling approach certainly leads to PTASes which are relatively easy to

analyse from a theoretical perspective. This is of great use to the theoretical com-

munity. However, as we saw in chapter 4, most (if not all) PTASes’ running times

are unhelpfully high. It would be very interesting to see algorithms which draw

ideas from successful PTASes, yet are able to run in reasonable amounts of time. In

the best case scenario, such an algorithm would still be a PTAS, and could poten-

tially perform very well in practice. Unfortunately our first attempts to do so (in

chapter 4) had little success—we hope that future researchers have better luck.

174

Bibliography

[1] Agarwal, A., Charikar, M., Makarychev, K., and Makarychev, Y.

O(
√

log n) approximation algorithms for min UnCut, min 2CNF deletion,

and directed cut problems. Proceedings of the Thirty-Seventh Annual ACM

Symposium on Theory of Computing (2005), 573–581.

[2] Ailon, N., Charikar, M., and Newman, A. Aggregating inconsistent

information: ranking and clustering. In Proceedings of the Thirty-Seventh

Annual ACM Symposium on Theory of Computing (2005), ACM New York,

NY, USA, pp. 684–693.

[3] Ali, I., Cook, W., and Kress, M. On the Minimum Violations Ranking

of a Tournament. Management Science 32, 6 (1986), 660–672.

[4] Alon, N. Ranking tournaments. SIAM Journal on Discrete Mathematics 20,

1 (2007), 137–142.

[5] Arora, S., Frieze, A., and Kaplan, H. A new rounding procedure for the

assignment problem with applications to dense graph arrangement problems.

Mathematical Programming 92, 1 (2002), 1–36.

[6] Arora, S., Karger, D., and Karpinski, M. Polynomial time approxima-

tion schemes for dense instances of NP-hard problems. Journal of Computer

and System Sciences 58, 1 (1999), 193–210.

[7] Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M.

Proof verification and the hardness of approximation problems. Journal of the

ACM 45, 3 (1998), 501–555.

175

BIBLIOGRAPHY BIBLIOGRAPHY

[8] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K.,

and Pandit, V. Local Search Heuristics for k-Median and Facility Location

Problems. SIAM Journal on Computing 33, 3 (2004), 544–562.

[9] Aslam, J., and Montague, M. Models for metasearch. Proceedings of the

Twenty-Fourth Annual international ACM SIGIR Conference on Research and

Development in Information Retrieval (2001), 276–284.

[10] Asuncion, A., and Newman, D. UCI machine learning repository, 2007.

[11] Bang-Jensen, J., and Thomassen, C. A Polynomial Algorithm for the

2-Path Problem for Semicomplete Digraphs. SIAM Journal on Discrete Math-

ematics 5 (1992), 366–376.

[12] Bansal, N., Blum, A., and Chawla, S. Correlation Clustering. Machine

Learning 56, 1 (2004), 89–113.

[13] Bar-Hillel, A., Hertz, T., Shental, N., and Weinshall, D. Learn-

ing a mahalanobis metric from equivalence constraints. Journal of Machine

Learning Research 6, 1 (2006), 937–965.

[14] Bar-Noy, A., and Naor, J. Sorting, Minimal Feedback Sets, and Hamilton

Paths in Tournaments. SIAM Journal on Discrete Mathematics 3 (1990), 7–

20.

[15] Basu, S., Bilenko, M., and Mooney, R. A probabilistic framework

for semi-supervised clustering. In Proceedings of the Tenth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (2004),

ACM New York, NY, USA, pp. 59–68.

[16] Bellman, R. Dynamic programming. Science 153, 3731 (1966), 34–37.

[17] Bertolacci, M., and Wirth, A. Are approximation algorithms for consen-

sus clustering worthwhile? Proceedings of the Seventh Annual International

Conference on Data Mining (2007), 437–442.

176

BIBLIOGRAPHY BIBLIOGRAPHY

[18] Bonizzoni, P., Della Vedova, G., Dondi, R., and Jiang, T. On the

approximation of correlation clustering and consensus clustering. Journal of

Computer and System Sciences 74, 5 (2008), 671–696.

[19] Chanas, S., and Kobylański, P. A new heuristic algorithm solving the

linear ordering problem. Computational Optimization and Applications 6, 2

(1996), 191–205.

[20] Charbit, P., Thomassé, S., and Yeo, A. The Minimum Feedback Arc

Set Problem is NP-Hard for Tournaments. Combinatorics, Probability and

Computing 16, 01 (2006), 1–4.

[21] Charikar, M., Guruswami, V., and Wirth, A. Clustering with qual-

itative information. Journal of Computer and System Sciences 71, 3 (2005),

360–383.

[22] Charon, I., and Hudry, O. A survey on the linear ordering problem for

weighted or unweighted tournaments. 4OR: A Quarterly Journal of Operations

Research 5, 1 (2007), 5–60.

[23] Chung, F. Spectral Graph Theory. American Mathematical Society, 1997.

[24] Conitzer, V., and Sandholm, T. Common voting rules as maximum

likelihood estimators. In Proceedings of the Twenty-First Annual Conference

on Uncertainty in Artificial Intelligence (2005), pp. 145–152.

[25] Cook, W., Golan, I., and Kress, M. Heuristics for ranking players in

a round robin tournament. Computers and Operations Research 15, 2 (1988),

135–144.

[26] Coppersmith, D., Fleischer, L., and Rudra, A. Ordering by weighted

number of wins gives a good ranking for weighted tournaments. In Proceedings

of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms

(2006), ACM New York, NY, USA, pp. 776–782.

[27] Dantzig, G. Linear Programming and Extensions. Princeton Univ Pr, 1963.

177

BIBLIOGRAPHY BIBLIOGRAPHY

[28] DasGupta, B., Enciso, G., Sontag, E., and Zhang, Y. Algorithmic

and complexity results for decompositions of biological networks into mono-

tone subsystems. BioSystems 90, 1 (2007), 161–178.

[29] Davidson, I., and Ravit, S. Clustering With Constraints: Feasibility

Issues and the fc-Means Algorithm. In Proceedings of the Fifth International

Conference on Data Mining (2005), Society for Industrial Mathematics.

[30] De Bie, T. Deploying SDP for machine learning. In Proceedings of the

Fifteenth European Symposium on Artificial Neural Networks (2007), pp. 205–

210.

[31] De Bie, T., and Cristianini, N. Fast SDP Relaxations of Graph Cut

Clustering, Transduction, and Other Combinatorial Problems. The Journal

of Machine Learning Research 7 (2006), 1409–1436.

[32] De Bie, T., Suykens, J., and De Moor, B. Learning from general label

constraints. Joint IAPR International Workshops on Structural, Syntactic,

and Statistical Pattern Recognition (2004), 671–679.

[33] Demaine, E., Emanuel, D., Fiat, A., and Immorlica, N. Correlation

clustering in general weighted graphs. Theoretical Computer Science 361, 2-3

(2006), 172–187.

[34] Demetrescu, C., and Finocchi, I. Removing cycles for minimizing cross-

ings. ACM Journal on Experimental Algorithmics (JEA) 6, 1 (2001).

[35] Diestel, R. Graph theory, electronic ed. Springer-Verlag Heidelberg, New

York, 2005.

[36] Dom, M., Guo, J., Huffner, F., Niedermeier, R., and Truß, A.

Fixed-parameter tractability results for feedback set problems in tournaments.

Lecture Notes in Computer Science 3998 (2006), 320–331.

[37] Downey, R., and Fellows, M. Parameterized Complexity. Springer New

York, 1999.

178

BIBLIOGRAPHY BIBLIOGRAPHY

[38] Dwork, C., Kumar, R., Naor, M., and Sivakumar, D. Rank aggrega-

tion methods for the web. In Proceedings of the Tenth International Conference

on the World Wide Web (2001), ACM New York, NY, USA, pp. 613–622.

[39] Eades, P., Lin, X., and Smyth, W. A Fast and Effective Heuristic for

the Feedback Arc Set Problem. Information Processing Letters 47, 6 (1993),

319–323.

[40] Eades, P., and Wormald, N. Edge crossings in drawings of bipartite

graphs. Algorithmica 11, 4 (1994), 379–403.

[41] Even, G. Approximating Minimum Feedback Sets and Multicuts in Directed

Graphs. Algorithmica 20, 2 (1998), 151–174.

[42] Fernandez de la Vega, W. MAX-CUT has a randomized approximation

scheme in dense graphs. Random Structures and Algorithms 8, 3 (1996).

[43] Fernandez de la Vega, W., Karpinski, M., Kenyon, C., and Ra-

bani, Y. Approximation schemes for clustering problems. In Proceedings of

the Thirty-Fifth Annual ACM Symposium on Theory of Computing (2003),

pp. 50–58.

[44] Fernandez de la Vega, W., and Kenyon, C. A randomized approxima-

tion scheme for metric max-cut. Journal of Computer and System Sciences

63, 4 (2001), 531–541.

[45] Fiedler, M. Algebraic connectivity of graphs. Czechoslovak Mathematical

Journal 23, 98 (1973), 298–305.

[46] Filkov, V., and Skiena, S. Integrating microarray data by consensus

clustering. In Proceedings of the Fifteenth IEEE International Conference on

Tools with Artificial Intelligence (2003), pp. 418–426.

[47] Fisher, D. Knowledge acquisition via incremental conceptual clustering.

Machine Learning 2, 2 (1987), 139–172.

[48] Ford, L., and Fulkerson, D. Flows in Networks. Princeton, New Jersey

(1962).

179

BIBLIOGRAPHY BIBLIOGRAPHY

[49] Frieze, A., and Kannan, R. The regularity lemma and approximation

schemes for dense problems. Proceedings of the Thirty-Seventh Annual IEEE

Symposium on Foundations of Computer Science (1996), 12–20.

[50] Frieze, A., and Kannan, R. Quick Approximation to Matrices and Ap-

plications. Combinatorica 19, 2 (1999), 175–220.

[51] Garey, M., Graham, R., and Ullman, J. An analysis of some packing

algorithms. In Combinatorial algorithms (Courant Computer Science Sympo-

sium 9) (1972), pp. 39–47.

[52] Gionis, A., Mannila, H., and Tsaparas, P. Clustering aggregation.

ACM Transactions on Knowledge Discovery from Data 1, 1 (2007), 1–30.

[53] Giotis, I., and Guruswami, V. Correlation clustering with a fixed number

of clusters. Proceedings of the Seventeenth Annual ACM-SIAM Symposium on

Discrete Algorithms (2006), 1167–1176.

[54] Goemans, M., and Williamson, D. Improved approximation algorithms

for maximum cut and satisfiability problems using semidefinite programming.

Journal of the ACM 42, 6 (1995), 1115–1145.

[55] Grotschel, M., Lovasz, L., and Schrijver, A. Geometric Algorithms

and Combinatorial Optimization, Algorithms and Combinatorics. Springer,

Berlin, 1988.

[56] Guo, J., Hüffner, F., and Moser, H. Feedback arc set in bipartite

tournaments is NP-complete. Information Processing Letters 102, 2-3 (2007),

62–65.

[57] Hagen, L., and Kahng, A. New spectral methods for ratio cut partitioning

and clustering. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 11, 9 (1992), 1074–1085.

[58] Harary, F. On the notion of balance of a signed graph. Michigan Mathe-

matical Journal 2 (1953), 143–146.

180

BIBLIOGRAPHY BIBLIOGRAPHY

[59] Huffner, F., Betzler, N., and Niedermeier, R. Optimal edge deletions

for signed graph balancing. Proceedings of the Sixth Workshop on Experimental

Algorithms (2007), 297–310.

[60] Indyk, P. A sublinear time approximation scheme for clustering in metric-

spaces. Proceedings of the Fortieth Annual IEEE Symposium on Foundations

of Computer Science (1999), 154–159.

[61] Johnson, D. Approximation algorithms for combinatorial problems. In Pro-

ceedings of the Fifth Annual ACM Symposium on Theory of Computing (1973),

ACM New York, NY, USA, pp. 38–49.

[62] Johnson, D. Finding All the Elementary Circuits of a Directed Graph. SIAM

Journal of Computing 4, 1 (1975), 77–84.

[63] Kamvar, S., Klein, D., and Manning, C. Spectral learning. In Interna-

tional Joint Conference On Artificial Intelligence (2003), vol. 18, pp. 561–566.

[64] Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman,

R., and Wu, A. A local search approximation algorithm for k-means clus-

tering. Computational Geometry: Theory and Applications 28, 2-3 (2004),

89–112.

[65] Karmarkar, N. A new polynomial-time algorithm for linear programming.

Combinatorica 4, 4 (1984), 373–395.

[66] Karp, R. M. Reducibility among combinatorial problems. Complexity of

Computer Computations (1972), 85–103.

[67] Kemeny, J. Mathematics without numbers. Daedalus 88 (1959), 571–591.

[68] Kendall, M. Further Contributions to the Theory of Paired Comparisons.

Biometrics 11, 1 (1955), 43–62.

[69] Kenyon-Mathieu, C., and Schudy, W. How to rank with few errors.

In Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of

Computing (2007), ACM New York, NY, USA, pp. 95–103.

181

BIBLIOGRAPHY BIBLIOGRAPHY

[70] Khachiyan, L. A polynomial time algorithm for linear programming. In

Soviet Mathematics Doklady (1979), vol. 20, pp. 191–194.

[71] Khot, S. On the power of unique 2-prover 1-round games. In Proceedings of

the Thirty-Fourth Annual ACM Symposium on Theory of Computing (2002),

ACM New York, NY, USA, pp. 767–775.

[72] Khot, S., Kindler, G., Mossel, E., and O’Donnell, R. Optimal inap-

proximability results for MAX-CUT and other 2-variable CSPs? In Proceed-

ings of the Forty-Fifth Annual IEEE Symposium on Foundations of Computer

Science (2004), pp. 146–154.

[73] Klein, D., and Randić, M. Innate degree of freedom of a graph. Journal

of Computational Chemistry 8, 4 (1987), 516–521.

[74] Kumar, A., Sabharwal, Y., and Sen, S. A simple linear time (1+/spl

epsiv/)-approximation algorithm for k-means clustering in any dimensions. In

Proceedings of the Forty-Fifth Annual IEEE Symposium on the Foundations

of Computer Science (2004), pp. 454–462.

[75] Land, A., and Doig, A. An automatic method of solving discrete program-

ming problems. Econometrica: Journal of the Econometric Society (1960),

497–520.

[76] Liu, Y., Jin, R., and Jain, A. BoostCluster: boosting clustering by pair-

wise constraints. In Proceedings of the Thirteenth ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining (2007), ACM

Press New York, NY, USA, pp. 450–459.

[77] Lloyd, S. Least squares quantization in PCM. Information Theory, IEEE

Transactions on 28, 2 (1982), 129–137.

[78] Mathieu, C., and Schudy, W. Yet another algorithm for dense max cut:

Go greedy. Proceedings of the Nineteenth Annual ACM-SIAM Symposium on

Discrete Algorithms (2008), 176–182.

[79] McJones, P. Eachmovie collaborative filtering data set. DEC Systems Re-

search Center 249 (1997).

182

BIBLIOGRAPHY BIBLIOGRAPHY

[80] Meila, M., Phadnis, K., Patterson, A., and Bilmes, J. Consensus

ranking under the exponential model. In Proceedings of the Twenty-Third

Annual Conference on Uncertainty in Artificial Intelligence (to appear) (2007).

[81] Meila, M., and Shi, J. A random walks view of spectral segmentation.

Proceedings of the Eighth International Workshop on Artificial Intelligence

and Statistics (2001).

[82] Mezard, M., Parisi, G., and Angel, M. Spin glass theory and beyond.

World Scientific.

[83] Mirkin, B. G., and Chernyi, L. B. On Measurement of Distance Between

Partitions of a Finite Set of Units. Automation and Remote Control 31 , 786–

792.

[84] Nadler, B., and Galun, M. Fundamental limitations of spectral clus-

tering. In Advances in Neural Information Processing Systems (Cambridge,

MA, 2007), B. Schölkopf, J. Platt, and T. Hoffman, Eds., vol. 19, MIT Press,

pp. 1017–1024.

[85] Ng, A., Jordan, M., and Weiss, Y. On spectral clustering: Analysis and

an algorithm. Advances in Neural Information Processing Systems 13 (2001),

849–856.

[86] Ostrovsky, R., Rabani, Y., Schulman, L., and Swamy, C. The effec-

tiveness of lloyd-type methods for the k-means problem. In Proceedings of the

Forty-Seventh Annual IEEE Symposium on Foundations of Computer Science

(2006), IEEE Computer Society Washington, DC, USA, pp. 165–176.

[87] Paccanaro, A., Casbon, J., and Saqi, M. Spectral clustering of protein

sequences. Nucleic Acids Research 34, 5 (2006), 1571–1580.

[88] Pachter, L., and Kim, P. Forcing matchings on square grids. Discrete

Mathematics 190, 1-3 (1998), 287–294.

[89] Park, L., and Ramamohanarao, K. Mining web multi-resolution

community-based popularity for information retrieval. In Proceedings of the

183

BIBLIOGRAPHY BIBLIOGRAPHY

Sixteenth ACM Conference on Conference on Information and Knowledge

Management (2007), ACM New York, NY, USA, pp. 545–554.

[90] Pelleg, D., and Baras, D. K-means with Large and Noisy Constraint

Sets. Lecture Notes in Computer Science 4701 (2007), 674–682.

[91] Poljak, S., and Tuza, Z. The max-cut problem: a survey. Special Year

on Combinatorial Optimization, DIMACS series in Discrete Mathematics and

Theoretical Computer Science. American Mathematical Society (1995).

[92] Raghavendra, P. Optimal algorithms and inapproximability results for

every CSP? In Proceedings of the Fortieth Annual ACM Symposium on Theory

of Computing (2008), ACM New York, NY, USA, pp. 245–254.

[93] Ritz, W. On a new method for solving some variational problems in mathe-

matical physics. Journal for Pure and Applied Mathematics 135 (1908), 1–61.

[94] Saab, Y. A Fast and Effective Algorithm for the Feedback Arc Set Problem.

Journal of Heuristics 7, 3 (2001), 235–250.

[95] Shamir, R., Sharan, R., and Tsur, D. Cluster graph modification prob-

lems. Discrete Applied Mathematics 144, 1-2 (2004), 173–182.

[96] Shi, J., and Malik, J. Normalized Cuts and Image Segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence 22, 8 (2000), 888–

905.

[97] Solé, P., and Zaslavsky, T. A coding approach to signed graphs. SIAM

Journal on Discrete Mathematics 7 (1994), 544–553.

[98] Spielman, D., and Teng, S. Spectral partitioning works: Planar graphs

and finite element meshes. Linear Algebra and Its Applications 421, 2-3 (2007),

284–305.

[99] Swamy, C. Correlation clustering: maximizing agreements via semidefinite

programming. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium

on Discrete Algorithms (2004), pp. 526–527.

184

BIBLIOGRAPHY BIBLIOGRAPHY

[100] Szemeredi, E. Regular partitions of graphs. In Problemes Combinatoires et

Theorie des Graphes (1978), pp. 399–401.

[101] Tarjan, R. Depth-First Search and Linear Graph Algorithms. SIAM Journal

on Computing 1 (1972), 114–121.

[102] Trinajstic, N. Chemical graph theory. CRC Press.

[103] van Zuylen, A., Hegde, R., Jain, K., and Williamson, D. Deter-

ministic pivoting algorithms for constrained ranking and clustering problems.

In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete

Algorithms (2007), pp. 405–414.

[104] Vazirani, V. Approximation Algorithms. Springer, 2001.

[105] Wagstaff, K., and Cardie, C. Clustering with instance-level constraints.

In Proceedings of the Seventeenth International Conference on Machine Learn-

ing (2000), pp. 1097–1097.

[106] Wilcoxon, F. Comparisons by ranking methods. Biometric Bulletin 1

(1945), 80–82.

[107] Xing, E., and Jordan, M. On Semidefinite Relaxation for Normalized

K-cut and Connections to Spectral Clustering. Computer Science Division,

University of California, 2003.

[108] Xing, E., and Karp, R. CLIFF: clustering of high-dimensional microarray

data via iterative feature filtering using normalized cuts. Bioinformatics 17,

90001 (2001), 306–315.

[109] Xing, E., Ng, A., Jordan, M., and Russell, S. Distance metric learning,

with application to clustering with side-information. In Advances in Neural

Information Processing Systems (2003), vol. 15, pp. 505–512.

[110] Yu, S., and Shi, J. Grouping with bias. In Advances in Neural Information

Processing Systems (2001), vol. 13.

[111] Zaslavsky, T. Signed Graphs. Discrete Applied Mathematics 4 (1982),

47–74.

185

