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Ranking is a fundamental activity for organising and, later, understanding data. Advice of the
form ‘a should be ranked before b’ is given. If this advice is consistent, and complete, then there
is a total ordering on the data and the ranking problem is essentially a sorting problem. If the
advice is consistent, but incomplete, then the problem becomes topological sorting. If the advice
is inconsistent, then we have the Feedback Arc Set (FAS) problem: the aim is then to rank a set
of items to satisfy as much of the advice as possible. An instance in which there is advice about
every pair of items is known as a tournament. This ranking task is equivalent to ordering the
nodes of a given directed graph from left to right, whilst minimising the number of arcs pointing
left.

In the past, much work focused on finding good, effective heuristics for solving the problem.
Recently, a proof of the NP-completeness of the problem (even when restricted to tournaments)
has accompanied new algorithms with approximation guarantees, culminating in the development
of a PTAS (polynomial time approximation scheme) for solving FAS on tournaments.

In this paper we re-examine many existing algorithms and develop some new techniques for
solving FAS. The algorithms are tested on both synthetic and non-synthetic datasets. We find
that, in practice, local-search algorithms are very powerful, even though we prove that they do not
have approximation guarantees. Our new algorithm is based on reversing arcs whose nodes have
large indegree differences, eventually leading to a total ordering. Combining this with a powerful
local-search technique yields an algorithm that is as strong, or stronger than, existing techniques
on a variety of data sets.

Categories and Subject Descriptors: G.2.2 [Discrete Mathematics]: Graph Theory—Graph
algorithms; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algo-
rithms and Problems—Computations on discrete structures, Routing and layout; G.1.6 [Numer-
ical Analysis]: Optimization—

General Terms: Algorithms, Experimentation, Theory

Additional Key Words and Phrases: Local Search, Feedback Arc Set, Approximation

1 Introduction

1.1 The Feedback Arc Set problem

The Feedback Arc Set (FAS) problem is a key combinatorial problem: to rank
items in a set given only advice about the correct way to order specific pairs. A
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ranking π of a set is simply a permutation of that set. Thus the only information
we have to help us to form our ranking is a set of statements of the form ‘a should
be ranked before b’.

If each statement is consistent with all others, the problem is simple to solve—
just return a ranking that agrees with all the advice. However, difficulties arise
when there is contradictory, or inconsistent, advice. For instance, given the three
statements, ‘a should be ranked before b’, ‘b should be ranked before c’ and ‘c
should be ranked before a’, there is no ranking of a, b and c which agrees with all
the statements.

The difficulty of the FAS problem, much like problems of clustering with advice—
such as the correlation clustering problem [Bansal et al. 2004]—is in deciding which
of the inconsistent advice to follow, and which to violate. The aim is to minimise
the number of statements that are violated.

The natural graph representation of the problem uses a vertex for each item and
a directed arc from a to b for each demand ‘a should be ranked before b’. In this
context, the aim is to order the vertices from left to right so that the number of
arcs pointing left (back-arcs) is as small as possible.

Problem: Feedback Arc Set (FAS)

Given a directed graph G = (V,E), find an ordering π over V to minimise
the number of back arcs: that is the number of arcs

{v → w ∈ E | π(v) > π(w)}

Given some ranking π, if we remove the set of back-arcs, we will eliminate all cy-
cles in the graph. We call such a set a Feedback Arc Set. An equivalent formulation
of the problem is therefore: given a digraph G, find the smallest subset S of the
arcs of G that intersects all cycles in G. The graph G′ obtained by removing the
arcs in S from G is acyclic—and thus a DAG—and admits a consistent ordering
via a topological sort.

In this paper we focus on the special case of tournament graphs, in which there
is an arc between each pair of nodes. We also consider weighted tournaments, in
which the weights on arcs u→ v and v → u must sum to 1.

1.2 Some applications of FAS

Originally motivated by problems in circuit design [Johnson 1975], FAS has found
applications in many areas, including computational chemistry [Klein and Randić
1987; Pachter and Kim 1998], and graph drawing [Eades and Wormald 1994].

Closely related to the FAS problem is the Rank Aggregation problem.

Problem: Rank Aggregation

Given a set Π of rankings over a set V , find a ranking σ to minimise∑
π∈Π K(σ, π), where K(σ, π) is the Kemeny distance [1959]; defined to

be the number of pairs v, w ∈ V where π(v) < π(w) and σ(v) > σ(w).

Dwork et al. [2001] outline the problem and motivate it as a method for aggregating
data from search engines. There is a significant body of work studying this problem,
which is known as MetaSearch [Aslam and Montague 2001].
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Rank Aggregation is a special case of FAS on weighted tournaments. There
is a fairly simple reduction: for each v, w ∈ V , if v is ranked above w in some
fraction f of the input rankings, place an arc between v and w with weight f . The
connection to Rank Aggregation is a principal reason for the attention paid to
the FAS problem on tournaments.

1.3 The Linear Ordering problem

Another similar problem to Feedback Arc Set is Linear Ordering.

Problem: Linear Ordering

Given a square matrix (cij) for i, j ≤ n, find a ranking π over [n] to
minimise:

∑
i,j

π(i)<π(j)

cij .

The weighted tournament version of FAS is a special case of Linear Ordering,
under the constraint that cij = 1− cji, and cij ∈ [0, 1].

1.4 Overview of heuristics

The problem of FAS is familiar to organisers of sporting leagues—often each team
plays each other once, and a ladder must be constructed which ranks the teams
as fairly as possible. In this context, it is natural to ask to minimise the number
of upsets as a measure of ‘fairness’. The standard solution to this problem is—
unsurprisingly—a simple one. We rank each team by the number of wins it has
achieved. In the graph version of the problem, where a match is represented by
an arc pointing from the loser to the winner, this is simply the indegree. This
means that the best teams (vertices) will be placed on the right hand side when we
order by indegree. The indegree has traditionally been given another name, after
Kendall [1955], the first to propose this algorithm to solve FAS. The Kendall score
of a vertex v is simply v’s indegree—that is the number of other vertices x, such
that we have a statement of the form ‘x should be ranked before v’.

The one complication to ordering by Kendall score is in resolving the issue of
ties—what happens if two teams have the same number of wins? Sporting leagues
tend to use domain-specific solutions to the problem (e.g. goal difference). Ali
et al. [1986] and Cook et al. [1988] propose a more general solution: for a set of
vertices T of the same Kendall score, break the tie by recursing into the subgraph
induced by T . We refer to this algorithm as the Iterated Kendall algorithm.

Eades et al. [1993] created an algorithm that is in fact quite similar to Iterated
Kendall, possibly inspired by selection sort. Again we choose the vertex v of
lowest Kendall score to place on the left-hand side of the ranking. The difference
is that we then recompute Kendall scores for the remaining vertices by considering
the subgraph remaining after dropping v.

Chanas and Kobylanski [1996] presented an algorithm for the Linear Ordering
problem (and thus also for FAS) based on repeated application of a procedure
analogous to insertion sort. In Section 2.2 we outline the algorithm, and compare
it to other sort-based methods.

Saab [2001] presents an algorithm using a divide-and-conquer approach. The idea
is to split the input into two halves, minimising the number of back-arcs between
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the halves, and then recurse on each half. However this minimisation task is a
difficult one: it is a directed version of the Min Bisection problem, and solving
it would solve FAS. We do not explore this algorithm further.

1.5 Overview of hardness and approximation

The FAS problem is one of Karp’s [1972] original NP-complete problems (in the
general case). Dwork et al. [2001] proved the Rank Aggregation problem is NP-
hard, even with as few as 4 input rankings. The FAS problem has now been shown
to be NP-hard, even on unweighted tournaments [Charbit et al. 2006]. Given this,
it is natural to ask for an approximation algorithm which runs in polynomial time,
yet is guaranteed to differ in cost from the optimal solution by a small factor.

Recently, there has been a flurry of activity in the approximation algorithms
community focused on the FAS problem for tournaments. The first constant factor
approximation algorithm for FAS, designed primarily for tournaments, was the
pivoting algorithm of Ailon et al. [2005]. Intuitively similar to quicksort, it uses
on average O(n log n) comparisons for an expected 3-approximation on tournament
graphs.

Coppersmith et al. [2006] showed that ordering the nodes by their Kendall score
is a 5-approximator on tournament instances. This of course includes the Iter-
ated Kendall algorithm. Interestingly, in terms of approximation guarantees,
the method chosen to resolve ties is irrelevant. So an arbitrary choice is as good as
the full recursive nature of the Iterated Kendall algorithm.

Kenyon-Mathieu and Schudy [2007] completed the approximation picture for
tournaments with a PTAS (polynomial-time approximation scheme).1 This scheme
comprises a local search heuristic—which we call Moves, and investigate in isola-
tion below—and the PTAS of Arora, Frieze and Kaplan [2002] for dense instances
of the Maximum Acyclic Subgraph problem.

1.6 Our contributions / paper organisation

In Section 2 we provide details of the algorithms we will test. Some are existing
procedures, others are our improvements to them, still others are based on our
scheme of reversing arcs (in an organised manner) to destroy directed triangles,
and thus produce a total ordering.

We then show in Section 3 that some of the existing heuristic algorithms are not
guaranteed approximators for the FAS problem.

We tested all algorithms on not only synthetic data (as has generally been the
method of testing heuristics in the past), but also on two sets of FAS problems
generated from Rank Aggregation data. Our experiments focus on both the
performance of the algorithms and on their running times. This work is outlined
in Section 4.

The results of these tests and further analyses are presented in Section 5. We
conclude and supply ideas for further work in Section 6.

1We did not implement this algorithm during this experimental evaluation. Although theoretically
very powerful, the algorithm is complicated and impractical to implement.
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2 Algorithm details

In this section we provide detailed descriptions of the algorithms that we will in-
vestigate, some of which we have already discussed.

2.1 Kendall score based algorithms

We remind the reader that the Kendall score of a vertex is simply its indegree. Two
fundamental algorithms are:

Algorithm: Iterated Kendall

Rank the nodes by their Kendall scores, with lowest Kendall score on
the left. If there are nodes with equal score, break ties by recursing
on the subgraph defined by these nodes. If there is a subgraph whose
elements all have equal indegree, rank them arbitrarily.

Algorithm: Eades

Select the node that has the smallest Kendall score and place it at the
left, breaking ties arbitrarily. Recurse on the remainder of the nodes,
having recomputed the indegrees on the remaining subgraph.

The Eades algorithm focuses on the left side of the ranking. We improve this by
allowing the selection of a vertex to either end of the ranking. For instance, if there
is a vertex v of extremely low outdegree, but no vertex of low indegree, it makes
sense to decide to place v on the right hand side of the ordering, rather than a less
appropriate vertex on the left hand side.

Let In(v) stand for the indegree of node v, with Out(v) its outdegree. Our
improved algorithm is:

Algorithm: Eades Improved

Select the node u that maximises |In(u)−Out(u)| and place it at the left
end if In(u) < Out(u), otherwise the right end. Recurse on the subgraph
induced by removing u. Again, break ties arbitrarily.

2.2 Sorting algorithms

As suggested above, Ailon et al.’s [2005] algorithm is much like the classic quicksort
algorithm for sorting. In fact, it is possible to define a FAS algorithm which is
analogous to almost any sorting algorithm. Unlike traditional sorting problems, in
which we assume there is a total order on the data, the difficulty in FAS is the
lack of transitivity, which sorting algorithms are designed to exploit. Nevertheless,
sorting algorithms provide schemes for deciding which of the advice to believe.

So we can define a general strategy for FAS based on some sorting algorithm S;
run S over the vertices of G, using as the comparison function “u < v if and only
if u→ v”.

For instance, using this strategy, Quicksort is defined as follows

Algorithm: Quicksort

Choose a pivot p ∈ V , uniformly at random. Let L ⊆ V be all vertices v
such that v → p, and let R = V \ (L∪{v}). Also, let πL be the ordering
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of L obtained by Quicksort, and πR be the analogous ordering of R.
Output (πL, v, πR), the ordering resulting from placing vertices in L on
the left (ordered by πL), etc.

Cook et al. [1988] focus on ensuring a Hamiltonian path exists along the final
ordering of the nodes; any sensible algorithm should achieve this. The method they
use to achieve this is in effect a bubble sort of the tournament. As noted above,
the Eades algorithm is the obvious analogy to selection sort, with our improved
version being a two-sided selection sort. To our knowledge, no paper has studied
the Mergesort approach; in this paper we test its performance.

Chanas and Kobylanski [1996] apply an insertion technique to the Linear Or-
dering problem that is more involved than the usual Insertionsort. As a sub-
routine, they use what is in effect Insertionsort, which they name SORT. It is
defined as follows:

Algorithm: SORT

Make a single pass through the nodes from the left to the right. As each
node is considered, it is moved to the position to the left of its current
position that minimises the number of back-arcs (if that number of back
arcs is fewer than its current position).

Since executing SORT cannot increase the number of back-arcs, the authors first
propose an algorithm SORT* which repeatedly applies SORT until there is no
improvement in the number of back-arcs. They also show that the composition of
two steps SORT ◦ REVERSE (where REVERSE simply reverses the order of the
nodes) cannot increase the number of back-arcs. The Chanas algorithm is therefore
(SORT* ◦ REVERSE)*, which the authors have demonstrated outperforms SORT*
alone on general graphs.

2.3 Local search algorithms

One approach that has been used successfully for many optimisation problems is
to begin with some solution and then iteratively improve that solution until no
further improvement is possible. Researchers have met with success in proving
approximation bounds for local search schemes for clustering problems. These
include k-median [Arya et al. 2004], k-means [Kanungo et al. 2004] and, recently,
Correlation Clustering [Coleman et al. 2008], which is similar in structure to
FAS.

The general local search scheme that we will consider is:

Given some solution π, consider all potential local improvements that
could be made to π. Choose as a new order π′, the local improvement
which minimises the cost, as long as that cost is strictly less than π’s.
If no such improvement exists, return π—otherwise repeat.

The important point here is to decide which permutations are local improvements
of some ranking π. Here we consider two such local improvement schemes for FAS:

—The Swaps heuristic, which swaps the position of two nodes in the order.
—The Moves heuristic, which moves one node to any position in the order, leaving

the relative order of the other nodes unchanged.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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In this paper we show that neither algorithm can provide an approximation
guarantee. On preliminary tests, we found that the Moves heuristic performed
well, but that Swaps did not; the latter was omitted from further experiments.

One particular advantage of a local search techniques is that the initial solution
it is given can be the output of an approximation algorithm. Consequently, the
local search approach inherits the approximation guarantee.

The Chanas algorithm. An application of the SORT step of Chanas has the
effect of checking, for each vertex of the graph, from left to right, if a move to
the left is possible. This is essentially a scheme for selecting which Moves-style
changes to make. The operation SORT ◦ REVERSE does the same thing, but with
moves to the right. So Chanas is simply a method for investigating Moves in a
particular order. We developed an alternative algorithm,

Algorithm: Chanas Both

Run Chanas, but change the SORT procedure, so it is allowed to move
a node either left or right, to the position that results in the fewest
back-arcs.

A consequence of this modification is that some nodes may be moved more than
once in a single SORT pass.

2.4 Triangle-destroying algorithms

A tournament has a cycle if and only if it has a directed triangle (~4). This is due to
the complete nature of a tournament graph—every (non-~4) cycle must have a chord
inside it that forms a strictly smaller cycle. We therefore considered algorithms that
destroy directed triangles by selecting arcs to reverse. It might seem more natural
to delete arcs, but this would make the digraph no longer a tournament, creating
the possibility of cycles without the presence of ~4s. Our scheme works in the
following way:

Algorithm: Triangle Deletion

While the tournament is not acyclic, choose an arc and reverse its ori-
entation. Once the tournament is acyclic, use the topological sort of the
vertices as the solution to the original problem.

The choice of arc to be reversed affects the performance and running time of this
procedure; the remainder of this section examines various heuristics.

We call the number of ~4s an arc is involved in its triangle count. The triangle
count of a tournament is simply the number of ~4s in that tournament. So the first
algorithm is:

Algorithm: Triangle Count

Run Triangle Deletion, choosing on each iteration the arc with high-
est triangle count.

There is a pitfall here though: reversing an arc can create a new ~4 that did not
previously exist. In Figure 1 we see that reversing the center arc does not actually
reduce the triangle count of the graph, as a single triangle is destroyed and new
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e flipping e
e

Fig. 1. An example where reversing creates a triangle whilst destroying another.

triangle is created. The problem here is really the length 4 cycle surrounding the
arc, and the solution is to reverse one of these outer arcs (one of which in fact has
triangle count two).

However there are (more complex) examples where reversing the arc with the
highest triangle count does not change the triangle count of the tournament. So
that arc still has the highest triangle count, leading to an infinite loop.

To avoid this problem, we define the following algorithm:

Algorithm: Triangle Delta

Run Triangle Deletion, choosing the arc the arc which causes the
greatest net reduction to the tournament’s triangle count.

A potential problem with Triangle Delta could be the existence of a tournament
that was not acyclic (and thus still had ~4s, and thus a positive triangle count), yet
contained no arcs whose reversal would lower the triangle count. Lemma 1 proves
that this situation is impossible.

Lemma 1. Let T be a tournament. If T has a cycle, then there exists an arc
e ∈ T such that reversing e will reduce the triangle count of T .

Proof. Let σ be an ordering of the vertices of T that induces a minimum Feed-
back Arc Set. Let a = v ← w be a back-arc of maximal length under σ, that is
maximising σ(w)− σ(v). We claim that reversing a will lower the triangle count.

Firstly, we note that reversing a will not create any ~4s of the form v-w-x, where
x is to the right of both v and w, as this would imply a back-arc v ← x that is
‘longer’ than v ← w; this is impossible by our choice of a. Similarly, no ~4 x-v-w
can be created where x is to the left of both vertices. So any ~4 created must involve
an x between v and w.

Consider the four possibilities for a node x that is placed between v and w by σ:

(1) v xoo woo

a

xx (reversing a will create a ~4). Say there are A such x’s.

(2) v // x // w

a

xx (reversing a will delete a ~4). B of these.

(3) v // x woo

a

xx (reversing a will have no effect). C of these.

(4) v xoo // w

a

xx (no effect). D of these.
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Since σ is optimal, moving v to the position after w will not reduce the back-arc
count. So the number of back-arcs into v from such x’s must be less than the
number of forward arcs from v to such x’s (strictly, as there is a back-arc from w
to v). So we have

A + D < B + C .

Similarly, moving w before v will not improve the order, so we have

A + C < B + D .

Combining these gives

2A + D + C < 2B + C + D =⇒ A < B ,

and therefore the number of ~4s will decrease.

In practice, contrary to our expectations, the Triangle Count algorithm tended
to outperform the Triangle Delta algorithm (except of course in the cases when
it did not complete execution). So we considered a third option, taking the best of
both worlds.

Algorithm: Triangle Both

Run Triangle Deletion, choosing the arc with the highest triangle
count, provided that it reduces the tournament’s total number of ~4s.

Note that the best algorithm we have for calculating the triangle count, and the
change in ~4s, for every arc of the digraph requires O(n3) operations.

In a weighted tournament, the weight of a ~4 is the sum of the weights of its arcs.
Therefore in such graphs, the triangle count of an arc is the sum of the weights of
the ~4s it is involved in.

2.5 Degree Difference algorithms

We designed a new algorithm, Degree Difference, which is again a triangle-
deletion algorithm, but which selects an arc to reverse based on a criterion that is
much simpler to compute than the full triangle count. However, the criterion seems
empirically to be related to the triangle count.

Algorithm: Degree Difference

Run Triangle Deletion, choosing the arc u→ v for which the differ-
ence between u’s indegree and v’s indegree is greatest.

Unfortunately, it may take Θ(n) time to find such an arc at each iteration. Never-
theless, this algorithm always makes progress towards a total ordering. The value
of

∑
v In(v)2 increases whenever an arc from a higher-degree to a lower-degree node

is reversed, and has a maximum value of
∑n−1

i=0 i2 when the tournament has a total
ordering.

In an effort to further speed up the Degree Difference algorithm, we used
a sampling technique. We sample log n vertices (favouring high indegree) to po-
tentially be the ‘tail’ of the arc, and another log n (favouring low indegree) to
potentially be the ‘head’. We then check each of the log2 n arcs between sampled
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...
(a) Global Optimum

...
(b) Local Optimum

Fig. 2. Standard Bad Example: the global optimum has a single back-edge, whilst the local
optimum (for the Swaps heuristic) has n − 2. The only difference between the two is in the
placement of the grey vertex—all other nodes are unchanged.

vertices, choosing the back-arc of highest degree difference. We resample if we find
back-arcs only of non-positive degree difference. This algorithm is called Degree
Difference Sampled 1, and it takes O(n2 log2 n) time on average.

A further variation, Degree Difference Sampled 2, maintains two lists: one
of potential head nodes, and one of potential tail nodes. The idea is to try to push
the quantity

∑
v In(v)2 towards its maximum (which is reached when all indegrees

are different).
With this in mind, a node v is a potential head if its indegree, In(v), is not unique

or there is no node of indegree In(v) − 1. Similarly, a node u is a potential tail
if In(u) is not unique or there is no node of indegree In(u) + 1. We sample log n
nodes from each list uniformly, and from those pairs select the arc with the largest
indegree difference to reverse.

3 Approximation counter-examples

We now show that various algorithms for FAS cannot guarantee reasonable factor
approximations.

All graphs shown are tournaments (complete graphs), but in the interest of read-
ability, not all arcs are drawn. In the figures below, only back-arcs, with respect
to the given ordering, are displayed. All pairs of nodes with no arc displayed are
assumed to have a right-pointing arc between them.

We remind the reader that the cost of a configuration is simply the total number
of back-arcs.

3.1 Standard bad example

This example consists of a completely transitive tournament of size n, with one
minor perturbation—there is a single back-arc, from the last node (node n) to
the first (node 1). Figure 2(a) shows this (global) optimum configuration; a local
optimum for the Swaps heuristic is shown in Figure 2(b), with cost n− 2.

Note also that there is no guarantee that Bubblesort will start with the grey
node placed after the white node. As Bubblesort (like Swaps) only ever ex-
changes adjacent nodes, if it starts from such a scenario, it will never reach a
configuration with the white node before the grey, and thus will only reach a costly
local optimum.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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...
Indegree: 2 1 2 n−3 n−3 n−2

1 2 3 n−2 n−1 n

Fig. 3. The Counterexample for the Eades algorithm. The global optimum is as pictured. The
Eades algorithm will place the white node at the rightmost position, creating n − 3 back-arcs,
whilst removing only 2.

... ...
(a) Global Optimum

...
(b) Local Optimum

Fig. 4. Counterexample family (n even) for the Moves local search heuristic (and thus for Chanas
& Chanas Both). Consists of two sets of n/2 vertices (black and white), each of which is internally
transitive. (a) Shows the global optimum. The black vertices are placed before the white, and
each white vertex has a single back-arc to the black vertex n/2 positions preceding it. (b) If we
interleave the black and white vertices (each set is internally in the same order), we have a locally
optimal solution. Yet now there is a back-arc from each black vertex to the white vertex that is
3, 5, 7, . . . positions preceding it.

3.2 The Eades algorithms

Figure 3 shows a modification to the standard bad example of Section 3.1, in
which the optimum solution has two back-arcs: from nodes n − 1 and n to node
1. Displayed below each node is its indegree. The Eades and Eades Improved
algorithms both place node 2 at the left of their solution (as it has the lowest
indegree); with that node removed, the induced subgraph is precisely the same
as the original one, albeit one node smaller. The final order will therefore be
(2, 3, 4, 5, . . . , n− 1, n, 1), which has a cost of n− 3.

3.3 Moves and Chanas

The configuration of Figure 4(b) is a local optimum for the Moves heuristic. The
spacing of the back-arcs ensures that it is never an improvement to move a single
node.

Following the discussion at the end of Section 2.3, neither the Chanas nor the
Chanas Both algorithms could escape from this configuration.

The cost of the local optimum is n2/8 − n/4. The global minimum, shown in
Figure 4(a), places all black nodes before all white nodes, without changing the
relative order within the colour group, thus incurring a cost of n/2. So the locality
gap here is in Ω(n).
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4 Experiments

We conducted a series of experiments to validate the empirical performance of
these algorithms. All experiments were conducted on a 4-core Intel Xeon 3.2GHz
machine, with 8 gigabytes of physical memory. All algorithms were compiled by
gcc version 3.4.6 with the -O3 optimisation flag.

In order to investigate the significance of initial solution quality to the effec-
tiveness of local search techniques, we first tested each algorithm in isolation—for
the local search algorithms, this meant starting from a random ordering—and then
passed the output of each algorithm into both the Chanas and Moves algorithms.

Note that passing the output of Chanas as input to Chanas is an surprising
case. Chanas is a local search algorithm—which would imply that as the output of
Chanas is locally optimal, a further call to Chanas would have no further effect.
However, a single call to the SORT* ◦ REVERSE step can significantly change the
ordering without affecting the solution quality. That is, whilst deciding that it is at
a local minimum, the algorithm can take a “sideways step” (one which changes the
ordering, without decreasing the cost). So it is possible that two calls to SORT* ◦
REVERSE can lower the cost of a ranking, whilst one will not.

Repeated calls to Chanas can sometimes move the algorithm out of a local
plateau. For this reason, Chanas + Chanas can sometimes improve on, and also
take longer than, Chanas alone. However, it is difficult to predict when this is going
to happen, and so no systematic method to take advantage of this is apparent.

4.1 Datasets

Biased. We tested the FAS algorithms on the following synthetic dataset. Start-
ing with a total order from nodes 1 to n, we reverse each arc independently with
probability p. In particular, with p = 0.5, we have a completely random tourna-
ment.

The following datasets provide a set of rankings to be aggregated—the Rank
Aggregation problem on these rankings provides us with a FAS tournament as
described in Section 1.2.

WebCommunities. Our colleague, Laurence Park provided us with a set of 9
rankings of a large set of documents (25 million) [Park and Ramamohanarao 2007].
From this we took 50 samples of 100 documents and considered the rankings of
each of those subsets.

EachMovie. We used the EachMovie collaborative filtering dataset
[McJones 1997] to generate tournaments of movie rankings. The idea here was
to identify subgroups (we used simple age/sex demographics) of the users, and
then generate tournaments that represented the ‘consensus view’ of those groups.

The EachMovie dataset consists of a vote (on a scale of one to five) by each user
for some set of the movies. To form a tournament from a group we took the union
of movies voted for by that group and then set the arc weight from movie a to
movie b to be the proportion of users who voted a higher than b. For consistency,
we sampled each tournament down to size 100.
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5 Discussion of Results

We tested all of the algorithms on a large number of data sets. We selected just
four of the data sets to display in Table I: these show a variety of performance char-
acteristics. We test three variants of each algorithm—the performance in isolation,
as well as the performance as input to both Moves and Chanas. Listed for each
variant is the percentage error, as compared to our baseline algorithm—Chanas
in isolation. Also listed is the percentage of ‘wins’—that is the number of times
the algorithm does the best (of the variant). If k algorithms each produce the best
solution on a given input graph, each is given 1/k wins. Finally, the total time
taken in seconds, is given.

We first note the striking performance of the Chanas local search procedure,
which is rarely beaten. Despite coming with an approximation guarantee, the
Quicksort procedure performs relatively poorly, as does the Mergesort algo-
rithm. Bubblesort does surprisingly well on the WebCommunities dataset,
although it seems from the results that the WebCommunities dataset is a par-
ticularly simple problem. Also, Bubblesort only does well after the Chanas
procedure is applied; otherwise it is possibly the worst of the algorithms. The
Eades and Eades Improved algorithms are strong, but there should be a slight
preference for the latter due to its lower running time.

As expected, the Triangle Both algorithm is very slow, though it is a strong
performer when combined with local search. The Degree Difference algorithm
is similar, though at a different point on the effectiveness/speed tradeoff. The
sampling methods for Degree Difference—Degree Difference Sampled 1
and Degree Difference Sampled 2—seem better compromises.

5.1 The Time-Effectiveness Tradeoff

Figure 5 highlights the tradeoff between speed and efficiency of selected algorithms.
On the Biased (p = 0.6) data set, the two algorithms that cannot be said to be
worse than others (as they are on the efficient frontier) are the hybrid of Degree
Difference Sampled 1 and Chanas, and the hybrid of Iterated Kendall
and Chanas. Chanas by itself, not shown in this picture, unsurprisingly takes
less time than these two algorithms. These three algorithms are therefore the
subject of further study.

In Figures 6(a) and 6(b), we experimentally test the benefit of multiple runs of
a randomised algorithm—to see if there is an effective sacrifice of running time in
comparison to solution quality.

In attempt to give each algorithm an equal amount of time to operate, we repeat
each algorithm twice, four times, eight times, etc. On each run, we execute Chanas
as a finishing step. In Figures 6(a) and 6(b), we plot the best result found over the
set of repeats, along with the total time taken, in seconds. In Tables II and III we
display the numerical results, along with the average and worst result for each set
of repeats.

There is a certain random component to all of these algorithms. For Iterated
Kendall, there is less randomness in the algorithm, and this is borne out in
the results. This leads to a relative stagnation in its effectiveness, especially on
the EachMovie data. The hybrid Chanas and Degree Difference Sampled
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Table I. Each algorithm is tested on the Biased data set with p = 0.6 and 0.95. We also
tested each algorithm on the WebCommunities and EachMovie data sets. In addition to the basic
algorithms, we ran Moves and Chanas-style local search procedures on the outcomes of each of
these algorithms. We report the average of the percentage (%) relative difference between the
number of back-edges (Errors), compared to the Chanas heuristic, over all problem instances in
the dataset. We also report the percentage (%) of times each algorithm wins (produces the best
amongst the solutions generated), with the win split between algorithms that are equal first on
a particular instances (Wins). Finally, the average running time (in seconds) of each procedure
(including the local search cleanups) is reported separately Time. Note that both Biased datasets
had 100 problem instances, WebCommunities 50, and EachMovie 146.

0.6 0.95 WebCommunities EachMovie
Variant Errors Wins Time Errors Wins Time Errors Wins Time Errors Wins Time

— 12.02 0.0 2.1 29.79 0.0 1.9 15.63 0.0 0.1 8.39 0.0 0.3
It. Kend. move 0.35 7.5 4.9 0.30 10.0 3.8 0.00 12.0 0.4 0.31 7.4 0.8

chan -0.35 10.9 6.7 0.00 14.5 4.5 0.00 13.6 0.3 -0.06 7.8 1.0

— 9.88 0.0 4.7 62.02 0.0 4.7 31.38 0.0 0.2 7.47 0.0 0.7
Eades move 0.56 4.0 7.5 0.31 5.5 6.9 0.01 5.3 0.6 0.25 11.5 1.1

chan -0.29 9.6 9.7 0.00 7.3 7.3 -0.00 6.7 0.4 -0.08 8.0 1.4

— 8.65 0.0 1.9 52.10 0.0 1.9 19.29 0.0 0.1 6.37 0.0 0.3
Eades Imp. move 0.60 3.2 4.7 0.32 5.2 4.7 0.00 8.6 0.3 0.37 2.2 0.8

chan -0.20 6.9 6.8 0.00 7.3 4.7 0.00 7.0 0.3 -0.02 6.3 1.0

— 0.00 74.0 5.6 0.00 27.8 2.8 0.00 23.6 0.1 0.00 83.8 0.7
Chanas move -0.01 34.1 7.5 -0.00 12.8 5.3 -0.00 9.4 0.3 -0.03 54.5 1.1

chan -0.04 6.4 7.8 -0.00 7.3 5.5 -0.00 7.0 0.3 -0.04 9.7 1.1

— 35.25 0.0 1.6 728.46 0.0 1.6 74.46 0.0 0.1 31.07 0.0 0.3
Bubble. move 0.75 4.0 4.6 0.21 7.0 3.4 0.00 5.4 0.3 0.33 1.5 0.8

chan -0.02 4.4 7.2 0.00 7.2 3.6 -0.00 8.9 0.3 -0.01 7.8 1.0

— 23.23 0.0 1.6 130.81 0.0 1.6 0.86 1.4 0.1 20.62 0.0 0.3
Merge. move 0.79 2.7 4.6 0.23 6.4 5.2 0.00 6.0 0.2 0.34 3.4 0.8

chan -0.02 5.6 7.2 0.00 7.2 4.5 0.00 6.6 0.3 -0.01 7.4 1.1

— 23.65 0.0 1.6 135.63 0.0 1.6 0.91 1.5 0.1 20.27 0.0 0.3
Quick. move 0.78 3.7 4.6 0.22 6.9 4.4 0.00 6.3 0.2 0.34 1.7 0.8

chan -0.01 4.9 7.1 0.01 7.2 4.5 0.00 6.5 0.2 0.01 8.1 1.0

— 2.12 0.2 345.4 0.06 21.6 208.9 0.01 19.3 2.7 4.42 0.0 52.5
Tri. Both move 0.23 12.4 347.9 0.05 10.4 211.1 0.00 8.7 2.8 0.26 5.5 52.9

chan -0.40 13.4 349.8 0.03 6.8 211.8 -0.00 7.0 2.8 -0.07 10.1 53.2

— 11.24 0.0 9.4 48.05 0.0 4.0 0.42 0.0 0.1 9.65 0.0 1.3
D. D. Sam. 1 move 0.30 9.6 12.2 0.29 5.6 5.8 0.00 7.1 0.3 0.29 2.2 1.8

chan -0.40 11.8 14.0 0.00 7.2 6.1 -0.00 7.5 0.3 -0.05 6.6 2.0

— 10.75 0.0 15.6 99.82 0.0 6.0 0.86 0.0 0.1 9.38 0.0 2.4
D. D. Sam. 2 move 0.33 8.1 18.3 0.27 5.9 8.4 0.00 6.2 0.3 0.32 4.4 2.8

chan -0.37 11.6 20.1 0.00 7.2 8.7 -0.00 7.1 0.3 -0.07 11.1 3.1

— 0.85 11.8 17.6 0.28 12.0 11.5 0.00 25.1 0.7 0.35 8.1 2.6
Moves move 0.85 2.2 19.4 0.28 5.7 14.3 0.00 8.8 0.8 0.35 2.9 2.9

chan -0.07 3.9 21.6 0.03 6.7 14.2 -0.00 7.2 0.8 -0.08 9.6 3.1

— 0.77 14.0 3.0 0.21 14.3 3.6 0.00 18.5 0.2 0.31 8.1 0.5
Chan. Both move 0.77 3.6 4.8 0.21 6.7 5.4 0.00 6.7 0.3 0.31 3.0 0.8

chan -0.09 5.1 7.0 0.03 6.7 5.9 -0.00 7.4 0.3 -0.05 7.5 1.0

Table II. The effect of repeated calls to a hybrid of each algorithm and Chanas. We ran each
algorithm multiple times and recorded the total running time as well as the best, worst and average
performance. These results are for the Biased p = 0.6 dataset.

Iterated Kendall Chanas Degree Difference Approx
Rep. Time Avg. Best Worst Time Avg. Best Worst Time Avg. Best Worst

1 19.2 1745.11 1745.11 1745.11 20.3 1750.22 1750.22 1750.22 26.3 1744.65 1744.65 1744.65
2 26.5 1745.02 1742.36 1747.68 28.8 1750.54 1745.35 1755.73 40.8 1743.92 1740.38 1747.45
4 40.6 1744.90 1740.22 1749.93 45.2 1750.57 1741.65 1760.51 69.4 1744.23 1738.08 1750.61
8 69.2 1745.08 1738.76 1751.75 78.5 1750.66 1738.87 1764.53 127.0 1744.24 1735.99 1753.47

16 126.5 1745.04 1737.73 1753.11 144.9 1750.53 1736.44 1768.42 242.0 1744.25 1734.30 1755.78
32 240.7 1745.08 1736.76 1754.33 277.4 1750.57 1734.68 1772.00 471.2 1744.25 1732.88 1757.80
64 468.2 1745.06 1736.09 1755.02 542.2 1750.57 1732.97 1775.53 929.8 1744.25 1731.68 1760.13

128 924.3 1745.05 1735.78 1755.53 1071.6 1750.57 1731.80 1778.49 1848.4 1744.24 1730.60 1762.00
256 1837.6 1745.04 1735.48 1755.94 2133.4 1750.55 1730.67 1781.28 3689.8 1744.24 1729.69 1763.69
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Fig. 5. The tradeoff between amount of time taken compared to the effectiveness of
the various algorithms as inputs to Chanas. A point to the left indicates reduced
running time; further downwards indicates fewer errors in the output ranking. The
data shown is from the Biased dataset, p = 0.6, from a run of 1000 instances of size
100. On the efficient frontier (the most valuable algorithms) are those that have
no other algorithm both below and to the left–these include Iterated Kendall,
and Degree Difference Sampled 1.

Table III. Similar data to Table II, for the EachMovie dataset.
Iterated Kendall Chanas Degree Difference Approx

Rep. Time Avg. Best Worst Time Avg. Best Worst Time Avg. Best Worst

1 3.0 1750.58 1750.58 1750.58 3.1 1750.68 1750.68 1750.68 3.9 1751.39 1751.39 1751.39

2 4.0 1750.60 1750.27 1750.93 4.3 1751.08 1749.53 1752.63 6.1 1750.77 1749.21 1752.34

4 6.1 1750.60 1750.11 1751.12 6.7 1750.82 1747.91 1754.04 10.2 1750.78 1748.13 1753.91

8 10.3 1750.54 1750.02 1751.21 11.7 1751.06 1747.26 1755.91 18.4 1750.78 1747.25 1755.26

16 18.6 1750.56 1749.91 1751.32 21.3 1751.11 1746.62 1758.06 35.0 1750.78 1746.77 1757.19

32 35.7 1750.58 1749.91 1751.38 40.5 1751.03 1746.28 1759.03 68.0 1750.74 1746.08 1758.13

64 69.6 1750.57 1749.88 1751.40 79.0 1751.07 1745.84 1761.29 134.1 1750.73 1745.84 1759.62

128 137.1 1750.59 1749.87 1751.41 156.7 1751.07 1745.59 1762.00 266.4 1750.74 1745.52 1760.30

256 272.8 1750.57 1749.87 1751.41 311.9 1751.09 1745.28 1763.47 531.8 1750.75 1745.31 1762.06

1 algorithms perform similarly on both datasets, however Degree Difference
Sampled 1 shows some advantage on the Biased dataset, whilst Chanas has a
clear advantage on EachMovie. Naturally, one could run Wilcoxon-style [Wilcoxon
1945] non-parametric tests to show that one algorithm is significantly better than
the other in a pure statistical sense. However, the difference may not be important,
and it can be hard to compare algorithms that take slightly different running times.
We leave the graphs themselves as the strongest evidence of the similar performance.

5.2 Time taken as problem size increases

We investigated the running times of the algorithms on larger data sets to infer
something about the running time growth (see Figure 7). In the diagram, we have
separated the algorithms into seven classes, each with roughly similar running times
(generally within 10% for each sample). We can see immediately that Triangle
Both and Degree Difference have very high running times, corresponding to
their cubic order of growth. The fastest class includes Iterated Kendall and
Quicksort as well as Chanas Both (but not Chanas) and Eades Improved
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(a) For the Biased dataset, p = 0.6.
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(b) For the EachMovie dataset (146 tournaments of size up to 100)

Fig. 6. The effect of repeated calls to a hybrid of each algorithm and Chanas. We
ran each algorithm once, twice, four times, etc. up to 256 times. Displayed for each
run is the best performing output over all repeats.

(but not Eades), which appear to have quadratic growth. So our improved algo-
rithms deliver a speed increase.

The middle range of speeds has Chanas, and Eades, along with Degree Dif-
ference Sampled 1 highlighting that Degree Difference Sampled 1 runs in
essentially similar time to Chanas, although for larger data sets Degree Differ-
ence Sampled 1 seems to have an advantage. The final class includes Degree
Difference Sampled 2 and Moves, which also appear to have cubic growth.

6 Conclusion

In this paper we outlined the operation of a number of algorithms for the FAS
problem, extending them where possible and developing a variety of new algorithms.
We demonstrated that some of the simple algorithms considered cannot be good
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Fig. 7. The running time taken by a selection of the algorithms, as the problem size
increases. Each plot represents a class of algorithms with similar running times.
All experiments were run on the Biased dataset, p = 0.6.

approximators. These results complement existing results about algorithms which
are proven approximators [Ailon et al. 2005; Kenyon-Mathieu and Schudy 2007].

Additionally, we examined each algorithm from a practical perspective, testing
its performance on two sets of real world data, as well as synthetic data. We found
in practice Chanas is a very effective algorithm, however using the output of a
different algorithm as input to Chanas is more effective again.

The most effective algorithms to do this were Iterated Kendall and Degree
Difference Sampled 1, with the first being faster, whereas the second was more
effective. We gave these algorithms more time (by repeated application), and found
that Iterated Kendall did not gain much advantage from this approach, whilst
Degree Difference Sampled 1 became more effective, though only slightly
better than Chanas alone.

Also we experimentally tested the large scale performance of the algorithms, find-
ing that Degree Difference Sampled 1 has some small running time advantage
over Chanas, whilst alternate algorithms, such as Iterated Kendall, Chanas
Both and Eades Improved tend to much smaller running times.

6.1 Further Work

The Chanas Both algorithm runs in significantly reduced time in comparison to
Chanas. However its performance is not as impressive. Perhaps there is a better
order to search local moves, which will run faster, yet perform as well as Chanas.

The Degree Difference Sampled 1 algorithm performs well, yet there are
many other ways of sampling the vertices to check indegrees. These could be
investigated—leading potentially to both better performing algorithms and theo-
retical results about them.

Most of the algorithms outlined here work unmodified on non-tournament di-
graphs. However, some, for example Triangle Both and Degree Difference,
will not work as currently specified, but perhaps analogous versions could be found
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that will. It would be profitable to test all these algorithms on non-tournaments in
much the same way as in this paper.
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