
A Local-Search 2-Approximation for
2-Correlation-Clustering?

Tom Coleman, James Saunderson, and Anthony Wirth

The University of Melbourne

Abstract. CorrelationClustering is now an established problem in
the algorithms and constrained clustering communities. With the re-
quirement that at most two clusters be formed, the minimisation prob-
lem is related to the study of signed graphs in the social psychology
community, and has applications in statistical mechanics and biological
networks.
Although a PTAS exists for this problem, its running time is impractical.
We therefore introduce a number of new algorithms for 2CC, including
two that incorporate some notion of local search. In particular, we show
that the algorithm we call PASTA-toss is a 2-approximation on com-
plete graphs.
Experiments confirm the strong performance of the local search ap-
proaches, even on non-complete graphs, with running time significantly
lower than rival approaches.

1 Introduction

The Two-Correlation-Clustering (2CC) problem asks us to partition a
dataset into two clusters given only advice about pairs of points in the dataset.
This advice comes in the form of soft must-link and cannot-link constraints.
The aim is to minimise the number of such constraints violated in forming the
clusters.

1.1 The 2CC Problem

The CorrelationClustering problem [1] asks us to form a clustering of a
signed graph that minimises the number of edges that are not respected. In
the 2CC variant, the number of clusters is restricted to two. This bears some
similarity to the MaxCut problem. Formally, the input is a graph G = (V,E)
and a labelling on edges l : E → {−1,+1}. The output is a clustering of the
vertices c : V → {−1,+1}. The aim is to choose a clustering that minimises the
number of edges that disagree with the labelling, viz.

|{e = (v, w) ∈ E s.t. l(e) 6= c(v) · c(w)}| .
? This work was supported by the Australian Research Council through Discovery

Grant DP0663979.

We refer to this as the cost of the clustering c under labelling l or just the cost if
the clustering and labelling are clear from the context. Note that labelling refers
to edges, whereas clustering refers to vertices, and that n refers to |V |.

If the graph is not two-connected, then each two-connected component can
be considered independently. Without loss of generality, we will therefore assume
that the input graph is two-connected.

1.2 Related Work

Initial work on signed graphs [2, 3] focused on graph theory, rather than opti-
misation. Early results [4] demonstrated that 2CC is an NP-complete problem,
both on complete graphs, and in general.

Bansal et al. [1] put forward the first approximation algorithm for min-2CC
on complete graphs, with factor 3. Giotis and Guruswami [5] completed the
picture, from a theoretical viewpoint, for 2CC on complete graphs by developing
a PTAS (polynomial time approximation scheme) for both the maximisation
and minimisation versions of the problem. For CorrelationClustering on
complete graphs, a PTAS exists for maximisation, but minimisation is APX-
hard [6]. The best known upper bound for min-CorrelationClustering on
complete graphs is a 5/2-approximation developed by Ailon et al. [7].

On general graphs, the problem is more difficult to solve. There is a direct
relationship between 2CC and the classic MaxCut problem: replace all + edges
on the signed graph with a pair of − edges meeting at a new vertex. The classic
SDP-based approximation algorithm, by Goemans and Williamson [8], achieves
a 0.878-approximation for MaxCut. Dasgupta et al. [9] extend this result to the
maximization version of the 2CC problem, achieving the same approximation
factor. Note that CorrelationClustering on general graphs and Minimum
Multicut reduce to one another, leading to O(log n) approximations [6]. Fi-
nally, Huffner et al. [10] use a fixed parameter algorithm, and some data reduc-
tion rules, to solve 2CC exactly in greatly reduced time compared to a brute
force algorithm. However, such algorithms are still exponential in running time.

1.3 History of the 2CC Problem

The 2CC problem has been repeatedly rediscovered, and renamed, since it was
first defined by Harary [2] in 1950. Harary introduced the signed graph: an undi-
rected graph with +1 or −1 labels on the edges (corresponding to must-link
and cannot-link advice). He also introduced the notion of imbalance in a signed
graph, which corresponds to the 2CC cost of the graph, the number of violated
constraints. Harary considered a psychological interpretation of the problem:
positive edges correspond to pairs of people who like one another, and negative
edges to pairs who dislike one another. His aim was to find two highly cliquey
groups.

Apart from social psychology, the study of signed graphs has many other
applications, notably in statistical mechanics, where it relates to energy config-
urations of the Ising model with no external field. Solé and Zaslavsky [3] show

a connection to coding theory: between signings of a graph and the cutset code
defined by that graph. Also, Dasgupta et al. [9] apply the problem to the de-
composition of large-scale biological networks into monotonic subsystems.

1.4 Layout of the Paper

In Section 2, we outline the majority of the algorithms used in this paper. In Sec-
tion 3, we show that the PASTA-toss algorithm is a 2-approximation. Section 4
explains a more involved algorithm, PASTA-flip, which is similar in structure
to PASTA-toss. Finally, Section 5 outlines the experiments we conducted to
validate the practical performance of these algorithms.

2 Algorithms to Solve 2CC

In this section, we provide details about most of the algorithms for 2CC that
we will run experiments on. This includes both existing work and two new algo-
rithms: PAST and Spectral.

2.1 Pick-a-Vertex Type Algorithms

The Pick-a-Vertex Algorithm Bansal et al. [1] outline a simple approxima-
tion algorithm for 2CC, which we call Pick-a-Vertex. It provides the inspi-
ration for a number of algorithms that we introduce in this paper. First some
notation: let N+(v) be the set of vertices that share a positive-labelled edge with
v, and N−(v) those that share a negative edge. So Pick-a-Vertex is

For each vertex v, there is an associated partitioning: one cluster being
{v} ∪N+(v), the other N−(v). Of these n partitionings, return the one
that minimises the number of disagreements with the labels.

Bansal et al. demonstrate that this simple algorithm is a 3-approximation for
the 2CC problem on complete graphs. It turns out that the 3-approximation
is tight, a fact not mentioned in the original paper. Consider a complete graph,
consisting solely of positive edges, apart from a Hamiltonian cycle of negative
edges. The optimal solution (placing all vertices together) has cost n, whilst any
Pick-a-Vertex solution will have cost 3n− 10.

Notice that the Pick-a-Vertex clustering described above is not a local
optimum. This fact is the inspiration for some of the algorithms we introduce.

The PAST Algorithm The Pick-a-Vertex algorithm was designed for com-
plete graphs. There is no obvious extension to incomplete graphs, as there may
not be candidate vertices v that are adjacent to every other vertex.

In the complete case, the edges incident to v form a spanning tree of the
underlying graph G. Now, any spanning tree of G induces a unique cluster-
ing that is consistent with the tree. From this perspective, Pick-a-Vertex is
considering spanning tree-based clusterings. We therefore propose the PAST
(Pick-a-Spanning-Tree) algorithm:

For each vertex v, perform a breadth first search from v to find a spanning
tree, and use that tree to induce a clustering. Return the best of the n
clusterings.

By using breadth-first-search trees, PAST chooses the same spanning trees as
Pick-a-Vertex on complete graphs, and is thus a generalisation.

2.2 Local Search

Local-search algorithms have been successful in practice for many years, and
more recently as approximation algorithms [11], for various combinatorial prob-
lems. For the 2CC problem, the obvious local improvement to make to is to
move (toss) a vertex from one cluster to the other if, by doing so, the cost of the
clustering is lowered.

Given a clustering c, the clustering cv represents the same clustering as c,
except with v ∈ V in the opposite cluster. We then define λv = cost(c) −
cost(cv), the improvement caused by the change (non-negative, if there is some
improvement). With this in mind, we define LocalSearch as follows:

Given a clustering c, let w be the vertex with maximum λw. If λw ≤ 0,
stop, otherwise let c← cw and repeat.

Counter Example for Local Search Approximation The LocalSearch
algorithm, used naively, has no good approximation guarantee. Consider a com-
plete graph with n/2 disjoint edges labelled − (all other edges are labelled +).
The global minimum here has cost n/2, however, there is a local minimum—
which cuts across each minus-edge—that has cost n(n− 2)/4.

2.3 The PASTA-toss Algorithm

PASTA-toss is defined in the following way:

Generate n breadth-first-search trees, one emanating from each vertex.
For each such tree T , after finding the 2-clustering Tc consistent with T ,
run LocalSearch on Tc. Return the best locally-optimal solution.

Clearly the PASTA-toss algorithm will return a solution no worse than the
PAST algorithm. In Section 3 we show that PASTA-toss is a two-approximation
on complete graphs.

2.4 A Spectral Algorithm

In an earlier paper [12], we formulated 2CC as an eigenvalue problem, similar
to the spectral clustering approach. We refer the reader to that paper for a full
exposition of that algorithm, which we will refer to as Spectral.

2.5 The PTAS

Giotis and Guruswami [5] discovered a PTAS (polynomial time approximation
scheme) for the k-CorrelationClustering problem, with arbitrary k. They
first take a random sample of the vertices and then use each possible clustering
of the sample as a basis for a clustering of the entire data set.

Giotis and Guruswami’s scheme provides a (1 + ε)-factor approximation al-
gorithm that runs in time 2O(1/ε3). However, the constants involved are large
enough that the smallest possible sample size is greater than 4000. In practice,
checking every sample clustering is infeasible. We investigated using the same
techniques with smaller sample sizes. Consequently, there are no approximation
guarantees, but we anticipated similar behaviour to the full-blown PTAS.

3 PASTA-toss is a 2-approximation

In this section we develop some theoretical results, leading to a proof that
PASTA-toss is a 2-approximation. To begin, we need the concept of a switching
class.

3.1 Switching

The notion of switching in signed graphs is well established [13]. Given a labelling
l, we generate another labelling lv by selecting a vertex v and flipping the labels
on the edges incident to v. We may repeat this switching operation at other
vertices, generating further labellings. The family of all possible labellings can
be partitioned into equivalence classes under this (multiple) switching operation:
we refer to labellings in the same class as switching equivalent.

In this paper we also introduce the notion of switching on 2-clusterings: we
switch a clustering c to cv by tossing v to the other cluster. In this way, every
clustering can be obtained by a series of switching steps from c.

Lemma 1 The cost of c under l is the same as the cost of cv under lv.

Proof. The only edges affected by these operations are edges incident to v. For
such an edge e = (v, u), l(e) = −lv(e), and c(v) = −cv(v), whilst c(u) = cv(u).
Thus the cost of such an edge is unchanged. ut
Lemma 1 tells us that if l has a solution of cost k, lv also has a solution of cost k.
Also as (lv)v = l, the converse is true. Consequently, we see the following useful
corollaries.

Corollary 1 The optimal costs of all labellings in a switching class are the same.
In particular, if c∗ is an optimal clustering for l, then c∗v is an optimal clustering
for lv.

Corollary 2 For a given labelling l, there exists a labelling l′, switching equiv-
alent to l, for which placing all vertices together in one cluster is optimal.

Note that the optimal cost for l′ in Corollary 2 equals the number of negative
edges in l′.

3.2 Switching-Invariant Algorithms

Imagine we knew that an algorithm behaved in essentially the same way on all
switching-equivalent labellings. Then Corollary 2 tells us that we can focus on
labellings in which the optimum has all elements in one cluster.

Definition 1 An algorithm is switching invariant if, whenever it produces c on
input l, it produces cv on input lv.

We now investigate the behaviour of two key algorithms under switching.

Lemma 2 PAST is switching invariant.

Proof. Let T be any spanning tree of G inducing a clustering Tc under PAST.
Consider two vertices u and x in V . Whether they are clustered together depends
only on the parity of the number of negative edges on the path between u and
x in tree T . If v is not on this path, clearly the parity is unchanged. If v is on
the path, the parity is changed only if u or x is v.

So under lv, the clustering based on T is switching invariant. Lemma 1 tells
us that the spanning tree that induces the best clustering on l also induces the
best clustering on lv. ut

We can now infer an interesting fact about spanning trees.

Lemma 3 For a given labelling l on a graph G, there exists a spanning tree T
that induces an optimal clustering.

Proof. Consider labelling l′ as defined in Corollary 2. The positively-labelled
edges in l′ form a subgraph that is connected and spans G: if they did not,
then there would be a non-trivial cut of G with only l′-negative edges. This
would imply that the optimum clustering must use two clusters, contradicting
the definition of l′. Hence, we can find a spanning tree T of positively-labelled
edges in l′: this induces a solution with all vertices in one cluster.

The proof of Lemma 2, combined with Corollary 1 shows that T will induce
the optimum solution on l. ut

LocalSearch is not exactly switching invariant, but we can prove a similar
result.

Lemma 4 If LocalSearch is given l as input and uses c as a starting point,
resulting in solution c̄, then given input lv and starting point cv, LocalSearch
produces solution (c̄)v.

Proof. Consider running two simultaneous instances of LocalSearch, one start-
ing from c and the other starting from cv. To begin with, the only edges that
could possibly be different are the edges incident to v. The proof of Lemma 1
shows that the edges that incur a cost are the same in (lv, cv) as they are in (l, c).
So in both cases, λu is the same, for all u ∈ V . Therefore the same sequence of
vertices will be chosen to be tossed. ut

The following lemma is an immediate consequence of Lemmas 2 and 4.

Lemma 5 PASTA-toss is switching invariant.

3.3 Proof that PASTA-toss is a 2-approximation

Since PASTA-toss is switching invariant, we can analyse its behaviour on in-
put labellings in which the optimum places all vertices in one cluster (refer to
Corollaries 1 and 2). For such a labelling, no vertex has minus-degree more than
n/2, and the optimum cost is simply the total number of minus-edges in the
graph. If we let β be the minimum of the minus-degree of all the vertices, then
cost∗ ≥ βn/2.

To analyse the performance of PASTA-toss consider the iteration where
PASTA-toss uses the spanning tree from v, a node of minus-degree β. Initially,
the algorithm splits the vertices into two sets, X0 = {v} ∪ N+(v) and Y0 =
N−(v). As the local search progresses, vertices will be tossed from one set to
the other (call them X and Y). Consider the point at which the first vertex is
tossed from X to Y . Note that this means |Y | ≤ β.

We can compare the cost of the clustering (X, Y) to cost∗ in a fashion similar
to Bansal et al.. We can form an estimate of the difference by counting the
number of + edges between X and Y , discounting the − edges. For a vertex
v ∈ V , and a set A, define A+

v to be the number of + edges from v to A. A−
v is

defined in the analogous way. Then

cost(X, Y)− cost∗ =
∑

y

X+
y −

∑
y

X−
y =

∑
y

pully ≤ β max
y∈Y

pully (1)

Where pully = X+
y −X−

y is the “pull” that X exerts on y.
If we let pushy = Y −

y − Y +
y (the “push” that Y exerts on y), the local

improvement of swapping any node y ∈ Y is given by

impy = pully + pushy (2)

So we can use a bound on the local improvement of swapping a node (from X)
to get a contradictory bound on pully for any y.

Theorem 1 PASTA-toss is a 2-approximation on complete graphs.

Proof. We claim at this point, when the first node to be swapped is from X,
that cost(X, Y) ≤ 2cost∗.

Arguing by contradiction, suppose that cost(X, Y) is not within a factor 2
of cost∗. Then there must be some y0 ∈ Y such that pully0

> n/2.
Let x0 be the vertex from X that is about to be swapped. By definition,

Y +
x0

+ Y −
x0

= |Y | and X+
x0

+ X−
x0

= n− |Y | − 1

Since we have assumed that the optimum solution places all vertices together,
x0 is incident to at most n/2 negative edges, and so X−

x0
≤ n/2. So we have

impx0
= X−

x0
+ Y +

x0
−X+

x0
− Y −

x0
≤ 2X−

x0
− (X−

x0
+ X+

x0
) + (Y +

x0
+ Y −

x0
) ,

which is at most 2|Y |+ 1. Given x0 is the vertex which is about to be swapped,
impy0

≤ impx0
≤ 2|Y |+ 1.

Alternatively, if the algorithm ends without ever swapping an x ∈ X, at the
conclusion, impy0

≤ 0 < 2|Y |+ 1.
So, using (2) and our assumption, we have

pushy0
= impy0

− pully0
< 2|Y | − 1− n/2 (3)

Now we use the fact that y0 has to have at least β minus-edges to show a
contradictory lower-bound on pushy0

. We have

pushy = Y −
y0
− Y +

y0

= 2Y −
y0
− |Y |+ 1

≥ |Y | − 2X−
y0

+ 1

= |Y |+ X+
y0
−X−

y0
− (X+

y0
+ X−

y0
) + 1

> 2|Y |+ 1− n/2

The first equality follows as Y −
y0

+Y +
y0

= |Y |−1, the first inequality as the minus-
degree of y0, Y −

y0
+X−

y0
is at least β ≥ |Y |, and the second as X+

y0
+X−

y0
= n−|Y |

and X+
y0
−X−

y0
= pully0

> n/2. ut

4 The PASTA-flip Algorithm

The PASTA-flip algorithm is another local-search approach, but rather more
involved than tossing vertices between clusters.

4.1 Removing Bad Cycles

By removing bad cycles, defined below, we will produce a graph that is trivial
to cluster.

Definition 2 A bad cycle is a cycle C in G in which there is an odd number of
negative-labelled edges.

These cycles are called bad as there is no clustering of the vertices in C that
satisfies all the labels of C’s edges. On the other hand, if there are no bad cycles
in a graph, solving the problem is easy.

Lemma 6 Suppose l is a labelling that causes G to have no bad cycles. Then
there is a clustering of the vertices with cost zero.

Proof. Choose some vertex v and assign every other vertex u to a cluster based
on the parity of the number of negative edges on the paths between u and v.
Note that the parity is uniquely defined: if not, there would be a cycle with an
odd number of negative edges. This proves the lemma, as all paths (and edges,
as length one paths) are respected. ut

The basic principle of PASTA-flip is that it might be a good idea to flip the
label on an edge that is involved in many bad cycles: the cycles would then
become good. If this process could be repeated in an organised way so that no
bad cycles remained, then the clustering problem would be trivial. This approach
has two drawbacks. Firstly, it is conceivable that there is a scenario where there
exists a bad cycle, yet there is no edge to flip that will reduce the number of
bad cycles. More importantly, there are too many cycles to consider (possibly
an exponential number).

Cycle Bases Let us represent a set of edges by an |E|-dimensional vector with
entries in Z2. The set of all cycles is a subspace of this vector space. Standard
results show that the cycle space has dimension |E|−|V |+1 and can be generated
by a spanning tree T of G. We obtain a fundamental basis of the cycles by forming
a cycle Ce for each edge e = (v, w) /∈ T : Ce is e plus the path in T from v to w.

4.2 The PASTA-flip Algorithm

Consider such a fundamental cycle basis. Each edge e /∈ T will only be involved
in a single cycle in the basis, Ce. So there is one straightforward technique to
ensure that each cycle in the basis is good: if Ce is bad, simply flip e. At the end
of this process, the labellings on the T -edges will be respected, which is exactly
the PAST algorithm.

However this is wasteful—edges inside T are involved in many basis cycles.
Flipping one of these edges could potentially fix a number of bad cycles (in the
basis), and thus mean fewer flips. Each flip represents a disagreement between the
output clustering and the (original) edge labelling. With this in mind, we define
the PASTA-flip (Pick-a-Spanning Tree and flip) algorithm as follows:

For each vertex v create a breadth-first-search tree Tv. While there is
an edge e ∈ Tv which is involved in more bad cycles than good, flip e.
When there are no more such edges, flip edges outside of Tv. Return the
solution found of lowest cost.

The action of “flipping” never worsens the 2CC cost, giving the following lemma.

Lemma 7 The cost of the solution returned by PASTA-flip is no greater than
the cost of the solution returned by PAST.

5 Experimental Work

5.1 Algorithms Tested

In our experimental work, we tested all algorithms mentioned in Section 2, along
with PASTA-flip. As mentioned, the PTAS was not feasible to implement, so
we tested a PTAS-like algorithm, called PTAS-k, where k is the sample size. Also,
the algorithm we refer to below as LocalSearch takes n randomised starting

clusterings, and produces the best clustering found after toss-based search from
each. This is to compare it to PASTA-toss, which uses n PAST-style starting
clusterings. Also we experimented with PASTA-flip+toss, which performs
PAST, and for each tree flips edges (until no more flips are possible) and then
tosses vertices. Additionally we used the code provide by Dasgupta et al. [9] to
test the Goemans-Williamson style SDP algorithm that they developed.

5.2 Datasets

For our experimental work, we used three datasets: the regulatory network of
human epidermal growth factor (EGFR), as used by both Dasgupta et al. [9]
and Huffner et al. [10] in their investigations, and two synthetic datasets.

Each synthetic dataset was generated randomly subject to two parameters,
which were independent over each edge. The first, pe, is the probability that an
edge exists (with either sign), and given the edge exists. The second, p, is the
probability that the edge agrees to a randomly generated initial clustering.

The first data set, called Sparse, had problems of size 200, a pe value of 0.05,
and a p value of 0.3, which was an attempt to approximate the EGFR dataset.
The second data set, called Complete, had problems of size 100, pe = 1—thus
all graphs are complete—and p = 0.45. We found empirically that lower values
of p result in 2CC problems that are easy to solve.

All experiments were run on a 2 GHz Intel Core 2 Duo machine with 2GB of
RAM, running MAC OS X 10.5.2. All algorithms were implemented in C, apart
from Spectral and GW-SDP, which were run in Matlab 7.4.0. Note that this
means the times recorded for the Matlab algorithms perhaps were not entirely
appropriate for comparison.

5.3 Results

Figures 1 and 2 show the relative performances of the algorithms discussed in
this paper on the EGFR and Complete datasets. These plots compare the
algorithmic performance (number of errors) to the time taken to achieve that
performance. As we can see, the PTAS algorithms and PAST perform poorly
as a rule; Dasgupta can achieve good results, but is very slow in comparison
to our algorithms.Although the Spectral technique can be quite fast on sparse
graphs, its performance is not great. Table 5.3 summarises the results on all
three datasets.

6 Conclusions

In this paper, we have introduced some new algorithms for solving the 2CC prob-
lem: PASTA-toss, PASTA-flip, and the spectral method. The PASTA-toss
algorithm is a 2-approximation on complete graphs. In general, performances
of the local-search enhanced algorithms are impressive, with comparatively low
running times. Certainly, they form a more practical approach than the existing
PTAS, whilst retaining some proved performance bounds.

 180

 200

 220

 240

 260

 280

 300

 320

 340

 0.1 1 10 100

A
ve

ra
ge

 n
um

be
r

of
 e

rr
or

s

Time (in seconds)

DasGupta

Spectral PAST

PASTA-flip
PASTA-toss

PASTA-flip+toss

PTAS-10 PTAS-15

LocalSearch

Fig. 1. The time/effectiveness profile on the EGFR Dataset.

 2100

 2150

 2200

 2250

 2300

 2350

 1 10 100 1000 10000

A
ve

ra
ge

 n
um

be
r

of
 e

rr
or

s

Time (in seconds)

DasGupta

Spectral

PAST

PASTA-flipPASTA-toss
PASTA-flip+toss

PTAS-10

PTAS-15

LocalSearch

Fig. 2. The time/effectiveness profile on 100 instances of complete signed graphs, n =
100 and p = 0.45.

Table 1. The results of running all algorithms on all datasets. We report the average
of the percentage (%) relative difference between the number of errors compared to
LocalSearch, over all problem instances in the dataset. The running time is measured
in seconds.

EGFR Sparse Complete
Algorithm Cost Time Cost Time Cost Time

Dasgupta -0.070 54.01 -0.011 26.28 0.006 689.01
Spectral 0.192 0.42 0.224 2847.70 0.021 114.35
PAST 0.169 1.37 0.298 29.16 0.111 4.54
PASTA-flip -0.061 3.55 -0.033 80.60 0.000 20.77
PASTA-toss -0.023 2.22 -0.020 54.82 -0.000 8.54
PASTA-flip+toss -0.070 4.25 -0.042 99.62 -0.000 23.18

6.1 Further Work

Is it possible to apply these methods to solve CorrelationClustering prob-
lems in which the required number of clusters is fixed at a number larger than
two? Although the local search step generalises easily, it is not at all clear how
to generalise the spanning tree approach.

We have no example showing that the 2-approximation result for PASTA-
toss is tight. We suspect that the proof technique for the approximation perfor-
mance of PASTA-toss extends to PASTA-flip, but have not yet investigated
this in detail. The approximability of 2CC on general graphs is not well under-
stood: the results for MaxCut also apply, but they tell us little about the min-
imisation problem. The good performance of our algorithms on general graphs
suggest that we may obtain something better than the reduction to Minimum
Multicut of the generic CorrelationClustering problem.

References

1. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1)
(2004) 89–113

2. Harary, F.: On the notion of balance of a signed graph. Michigan Mathematical
Journal 2 (1953) 143–46

3. Solé, P., Zaslavsky, T.: A coding approach to signed graphs. SIAM Journal on
Discrete Mathematics 7 (1994) 544–53

4. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete
Applied Mathematics 144(1-2) (2004) 173–82

5. Giotis, I., Guruswami, V.: Correlation clustering with a fixed number of clusters.
Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms
(2006) 1167–76

6. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information.
Journal of Computer and System Sciences 71(3) (2005) 360–83

7. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: Rank-
ing and clustering. Proceedings of the 37th annual ACM Symposium on Theory
of Computing (2005) 684–93

8. Goemans, M., Williamson, D.: Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the
ACM 42(6) (1995) 1115–45

9. DasGupta, B., Enciso, G., Sontag, E., Zhang, Y.: Algorithmic and complexity re-
sults for decompositions of biological networks into monotone subsystems. BioSys-
tems 90(1) (2007) 161–78

10. Huffner, F., Betzler, N., Niedermeier, R.: Optimal edge deletions for signed graph
balancing. Proceedings of the 6th Workshop on Experimental Algorithms (2007)
297–310

11. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local
search heuristics for k-median and facility location problems. SIAM Journal on
Computing 33(3) 544–62

12. Coleman, T., Saunderson, J., Wirth, A.: Spectral clustering with inconsistent ad-
vice. Proceedings of the 25th Annual International Conference on Machine Learn-
ing (2008) 152–159

13. Zaslavsky, T.: Signed Graphs. Discrete Applied Mathematics 4 (1982) 47–74

