On The Complexity of Manipulating Elections

Tom Coleman

Vanessa Teague

Department of Computer Science and Software Engineering
The University of Melbourne
Victoria 3010
Email: {colemant, vteague}@csse.unimelb.edu.au

Abstract

We study the manipulation of voting schemes, where
a voter lies about their preferences in the hope of im-
proving the election’s outcome. All voting schemes
are potentially manipulable. However, some, such
as the Single Transferable Vote (STV) scheme used
in Australian elections, are resistant to manipulation
because it is AP-hard to compute the manipulating
vote(s). We concentrate on STV and some natural
generalisations of it called Scoring Elimination Pro-
tocols. We show that the hardness result for STV is
true only if both the number of voters and the number
of candidates are unbounded—we provide algorithms
for a manipulation if either of these is fixed. This
means that manipulation would not be hard in prac-
tice when either number is small. Next we show that
the weighted version of the manipulation problem is
NP-hard for all Scoring Elimination Protocols except
one, which we provide an algorithm for manipulating.
Finally we experimentally test a heuristic for solving
the manipulation problem and conclude that it would
not usually be effective.

1 Introduction

In the 2004 federal election, Family First candidate
Steve Fielding won the sixth Victorian senate seat
with only 45,260 first-preference votes, about 2%. It
is common for the sixth seat to be won almost en-
tirely on the basis of passed preferences, but this
case was unusual because the preferences he received
were from Green, Democrat and Labor voters, who
probably preferred each other to the Family First
party (Colebatch 2004). So why did those people (or
the people who determined their senate tickets) vote
that way? Perhaps they were attempting to manip-
ulate the voting system, deliberately making a vote
that differed from their true preferences in the hope
of producing a better outcome than the truth would
have provided. Obviously, if everyone lies about their
preferences then the outcome may be quite unpopu-
lar. In this case, the attempt to manipulate the sys-
tem failed, producing an outcome that (presumably)
almost none of the manipulators expected.

Voting also arises in agent-based systems, where
we face the problem of how a group of selfish agents
can agree to (temporarily) cooperate on a particular
course of action. Each agent may have a different
set of preferences over possible actions. The system
designer must choose a voting scheme which, given a

Copyright © 2007, Australian Computer Society, Inc. This
paper appeared at Computing: The Australasian Theory Sym-
posium (CATS2007), Ballarat, Australia. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol.
65. Joachim Gudmundsson and Barry Jay, Eds. Reproduction
for academic, not-for profit purposes permitted provided this
text is included.

set of candidate actions and a set of votes ordering
those candidates, chooses a single winning candidate.

In agent-based systems as in the Senate, we would
like to use a system that was impossible to manip-
ulate. However, it was famously shown (Gibbard

1973, Satterthwaite 1975) that all non-dictatoriall
voting protocols of at least 3 candidates are manip-
ulable. Fortunately, all is not lost. Bartholdi and
Orlin (1991) showed that it is ANP-hard to compute
a successful manipulation of the STV protocol. This
N'P-hardness means that it is difficult to manipulate
such elections (especially from an agent based per-
spective).

Because it is known to be resistant to manipula-
tion, we concentrate on STV and some generalisations
in this paper. The STV protocol (also known as Pref-
erential Voting, or Instant Runoff Voting) proceeds in
rounds, in each of which we eliminate a single candi-
date. We begin by distributing votes to candidates
based on first preference, and we eliminate the can-
didate with least votes. After any candidate is elim-
inated, we redistribute each of his votes to the next
(remaining) preference. We re-tally the votes, and
eliminate the candidate with the next fewest votes.
When one candidate remains, we proclaim her the
winner. STV is used in many different political elec-
torates, notably both upper and lower house voting
in most states of Australia. STV is non-dictatorial, so
of course (by Gibbard and Satterthwaite) is manipu-
lable for just three candidates.

As a simple example where manipulation of STV
is possible, suppose you are the last voter in an elec-
tion and the others have voted as follows over three
candidates {a, b, c}:

6 votes | 2 votes | 2 votes | 4 votes

a b b C
b a C b
c c a a

Your true preference is a >~ b > c¢. If you vote
that way, a will have 7 first preference votes, whilst
b and ¢ will both have 4. One of b and ¢ will be
eliminated next—if it is ¢, then all its votes will be
redistributed to b and b will now have 8 votes, beating
your favoured candidate a. So it would be better to
vote ¢ > a > b—if you can guarantee the elimination
of b first, then after redistribution a will have a total
of 8 votes, whilst ¢ will have just 7.

In this paper we concentrate on hardness results
for a new generalisation of the STV protocol, which we
base on the idea of a scoring protocol—one in which
each preference is worth a certain number of points to
each voter. Hemaspaandra and Hemaspaandra (2005)
show that all scoring protocols bar one are N'P-hard
to manipulate when voters have different weights. In

i.e., the outcome not determined by a single voter.

this paper we demonstrate some simple conditions un-
der which it is easy to manipulate such protocols.

Elkind and Lipmaa (2005) demonstrate a method
of taking different protocols and combining them
through an operation called hybridization. They ac-
complish this by using an elimination step in the first
protocol. They consider the idea of closing a protocol
under hybridization with itself, forming a new pro-
tocol that is significantly different, but in some ways
the same. We extend this idea, and consider the clo-
sure of scoring protocol, termed a scoring elimination
protocol—these form a class of protocols generalising
STV.

We know that STV is NP-hard to manipulate.
However, this fact relies on instances with large num-
bers of both candidates and voters. Conitzer and
Sandholm (2002) demonstrate that for all P-time
evaluable protocols, manipulation is in P when the
number of candidates is fixed. However this algorithm
has extremely high complexity, and thus is imprac-
tical for any but very small numbers of candidates.
In this paper we provide a more efficient algorithm
for STV. We also provide a complementary proof that
when the number of voters is fixed, manipulation is
in P, for a broad class of other scoring elimination
protocols (including STV).

Notably, we extend Hemaspaandra and Hemas-
paandra’s (2005) result from scoring protocols to scor-
ing elimination protocols, providing a complete classi-
fication of such protocols into those that are easy and
hard to manipulate for the weighted voters, bounded
candidates case.

Finally we experimentally consider the proportion
of STV instances for which it is clear that no manip-
ulation is possible, to determine if complexity is re-
ally much of a good measure of difficulty for manip-
ulation anyway. Although intuitively this may seem
like a large proportion of instances, we find that it
is not, providing some validation for the complexity
approach.

2 Definitions

We adopt the convention that there are n candidates
and m voters.

Definition 1. A Vote v on a set C (of size n) is an

bijective function v : C' — [n], that is, a function that

assigns a value between 1 and n to each candidate.
We denote the set of all possible votes on C' as V.

Alternately we also sometimes consider a vote a
permutation on or a total ordering of the set. We
represent the ordering induced by a vote v in this
fashion:

Cl>Cy > ...>Cp
implying that v(¢1) = n,v(ce) =n—1,...,0(¢c,) = 1.

Note that this is the reverse of the usual way we
think about votes (where the most preferred candi-
date gets first place).

Definition 2. Let v € V¢ be a vote on the candidates
C and let C' C C be a subset of those voters. Then
v|ler € Ver is v restricted to C’ in the obvious way
(by the induced total ordering on C’). We define the
restriction of V to C, Ve = {v|cr,v € V'}

Definition 3. An Election consists of a set C
(known as the candidates) and a set V' of votes on
C. Tt is denoted (C, V).

Definition 4. A Voting Protocol Prot is a func-
tion, which, given an election (C,V) returns some
¢ € C, the winner of that election. Further, it is
required that Prot is in P, that is, we can evalu-
ate Prot in time polynomial in n and m. We say
Prot(C,V) =c.

Definition 5. Let V be a set of non-negative integers

of size n = |V|. We define the Weighted Election

(C,V, V) to be the election amongst C' with each vote

v; € V weighted by the corresponding weight vj;.
Given any voting protocol Prot, we say

Prot(C,V,V) = Prot(C,V’)
Where V' = {0; copies of v;,v; € V}.

Definition 6. A Voting Protocol Prot is manipula-
ble if there exists an election (C,V W {v}),? in which
Ve # p,v(p) > v(c), but Prot(C,V W {v}) # p, and
there is some vote v’ such that Prot(C,Vw{v'}) = p.
The vote v’ is referred to as a manipulation for the
vote v. Candidate p is the preferred candidate in vote
v.

Voting Protocols

In this section we outline exactly the voting protocols
that we will refer to in this paper.

Plurality

Given an election (C,V), we declare the winner to
be the candidate in C' with the most first preference
votes in V.

Veto

Given an election (C, V'), we declare the winner to be
the candidate in C' with the least last preference votes
inV.

Single Transferable Vote (STV)

STV is described in the following algorithm. We de-
fine the winner of the election (C, V') to be the winner
of the election (C’,V|¢), where C’ is the set of can-
didates remaining after eliminating ¢, the candidate
who receives the least first preference votes.

Function SingleTransferableVote
input : An Election (C,V)
output: The elected candidate ¢
if |C| =1 then return c € C

Initialise the tallies
forall ¢ € C do Tally[¢] =0

Distribute the votes
forall v € V do Tally[Head(v)] +=1

Eliminate candidate with lowest tally.

¢ = argmin,p Tally[r]

C'=C\{c}

Recursive Call

return SingleTransferableVote (C', V]cr)

Here Head is the function to take the first prefer-
ence from a vote.

Notice that we do not specify what happens in
these elimination protocols when the scores are tied.
The problem is that there is no obvious “fair” sys-
tem of tie-break. Many different systems are used to
resolve ties. For the purposes of this paper we will
always assume that ties go against the manipulator:
that is, it is not good enough for a manipulator to
ensure a tie to influence an elimination (or equivalent
for some other protocol), she must make sure that
the given candidate wins or loses by at least a single
vote.

?Note the use of W to highlight the fact our “set” of votes isn’t
really a set, but in fact an ordered multiset. Thus when we take
the union, we are necessarily taking a disjoint union.

Some Manipulation Problems

The manipulation problems we will be focusing on
are the following— successive generalisations of each
other.

SIMPLE MANIPULATION

GIVEN: A set C of candidates with a preferred can-
didate p, and a set V of known votes.
QUESTION:

Is there a vote w such that Prot(C,V W {w}) = p?

COALITIONAL MANIPULATION

GIVEN: A set of candidates C, a set V of known
votes, a number k of votes to be determined, and a
preferred candidate p € C

QUESTION: Is there a set of votes W of size k such
that the Prot(C, VW W) = p?

WEIGHTED COALITIONAL MANIPULATION(WCM)

GIVEN: A set C of candidates with a preferred can-
didate p, and a set V' of known voters, as set of cor-

responding weights V. A set of weights W of size k.
QUESTION: Is there a set of votes W (of size k),

such that the weighted election (C,V & W, Vi W)
results in the election of p?

Note that our requirement in Definition 4 that
evaluating Prot is in P guarantees that all problems
are in N'P.

3 Scoring Protocols

Scoring Protocols (also known as a Positional Pro-
tocols) are a class of voting protocols that can be
characterised by associating a score with each pref-
erence on a voting ballot. We decide an election by
choosing which candidate has the highest total after
tallying the scores from each of the votes.

The Borda protocol is the prototypical scoring pro-
tocol. For an election with n candidates, given any
vote, we assign no points to the last preference, one
to the second preference, up to n — 1 points to the
first preference. We can represent this protocol by
the vector (n—1,n—2,...,1,0), where each number
represents how many points it is worth to be in that
position on any given vote.

We have seen some other examples of scoring pro-
tocols already. The Plurality protocol can be im-
plemented as a scoring protocol with score vector
(1,0,...,0), and the Veto protocol by (1,1,...,1,0).

Definition 7. A Score Vector on n candidates, is
some vector

-)

with each «; € 7Z, subject to the conditions a; >
ag > -+ > ay, and not all «; equal.

&:(011,..

Definition 8. Given some score vector & on n can-
didates, and some vote v € V¢, we define the Score
of some candidate ¢ € C' from v parametrised by &:

’U@(C) = Qpn—v(c)+1

We define the score of ¢ under some set of votes V'
parametrised by a:

Vz(e) = Z vg(c)

veV

Definition 9. A Voting Protocol Prot is a Scoring
Protocol if there exists, for each n, a score vector &
of size n such that for any election on n candidates,
(V)
Prot(C,V) = argmax Vz(c)
ceC

To be precise we require that there exists a poly-
nomial time computable “scoring” function S from
natural numbers n (represented in unary) to score
vectors of size n. We denote the protocol defined by
such a scoring function S by Protg.

Such a scoring protocol will rank candidates from
first to last (which was not a requirement of our gen-
eral voting techniques, but which will be useful later).

Definition 10. We say a score vector & is in Normal
Form if a,, = 0 and ged {ay]oy; # 0} = 1.

Likewise a Scoring function S or Scoring Protocol
Protg is in Normal Form if S(n) is in normal form
for all n.

So the score vectors given for the Borda,
Plurality and Veto protocols given above were all
in normal form.

The following results establishes the existence and
uniqueness of a normal form for any protocol:

Proposition 1 (Hemaspaandra & Hemaspaandra
(2005, Observation 2.2)). Let @ = (aq,...,an) be a
scoring vector. Then for all elections (C, V'), (of size
n) and candidates c1,c1 € C the following hold:

e For all integers k, ad+k = (a1+k, an+k, ..., an+
k) is a scoring vector, and Protg ranks c1 above
co if and only if Protzyy ranks c1 above ca.

e For all positive integers k, ka =
(kaq, kas, ... kay) is a scoring wvector, and
Protg ranks c1 above co if and only if Protys
ranks c1 above cs.

Manipulating Scoring Protocols

We begin by establishing some results about which
scoring protocols are known to be easy or hard for
which problems.

Definition 11. A scoring protocol Protg is a Bi-
nary Scoring Protocol if for all n, S(n) =
(a1,...,0ap), all ; coordinates are either 0 or 1.

For instance Plurality and Veto are Binary, but
Borda is not.

Theorem 2. SIMPLE MANIPULATION 4s in P for any
Scoring Protocol Protg.

Proof. Let & = S(n). It is clear that candidate p
should be placed in the highest position of our vote.
So p will have final score Vz(p) + a.

Rank all other candidates in terms of Vi (score
from the votes in V), from lowest to highest as
{c1,¢2,...,¢n—1}. We now place the candidates in
the remaining positions in that order (that is ¢; in
position 2, etc).

Suppose that placing some ¢; in position i + 1
means it beats p. So the only way to make sure p
wins is to place ¢; in a higher (and thus lower scor-
ing) position. But there are only n — (i + 1) such
positions, and we know there are n — ¢ candidates
with at least as high a score as ¢;.

So we will have to place one of the n —¢ candidates
{¢i,...,¢n-1}, each who have equal or higher score
than ¢;, in position ¢ 4+ 1 or lower, say position k£ <
i+ 1. But as ax > ay41, this candidate will now beat
p. So no solution was possible. O

Theorem 3. COALITIONAL MANIPULATION is in P
for any Binary Scoring Protocol Protg.

Proof. Let & = S(n). We begin in the same fashion,
placing p in the top position of each vote. We will now
be able to give each ¢ € C' at most slack(c) points,
where:

slack(c) = Vz(p) + kay — Vz(c) — 1

That means we will have to place ¢ in at least
k — slack(c) 0 positions. If this number is is greater
than k, we cannot stop ¢ from beating p and we stop.

We place the ¢’s one at a time, in any order. For
each ¢ we choose the k — slack(c) votes with the
most remaining 0’s, and place ¢ in any position worth
0 points. We then place ¢ in a 1 position in each
other vote. This guarantees that no vote will have
more than one more 0 position than any other at any
stage.

Suppose for some candidate we do not have enough
votes with remaining 0 positions. Then as some votes
have no 0 positions, the most a single vote can have
is one. Thus there are not enough 0 positions left.
So as we were always giving the candidates the least
possible 0’s, no solution exists. O

Theorem 4 (Hemaspaandra and Hemaspaandra
(2005)). For any scoring protocol Protg, for any n, if
S(n) = (ar,02,...,0p), WCM is in P if g = az =
o= g, and is N'P-complete otherwise.

So this result says that any scoring protocol bar
Plurality is AP-hard to manipulate with more
than three candidates (any scoring protocol is equiva-
lent to Plurality with two candidates anyway), and
Plurality is in P. In Section 4 we show the equiva-
lent result for our generalisation of STV, Scoring Elim-
ination Protocols.

4 Scoring Elimination Protocols

As part of outlining a technique for hybridising vot-
ing protocols, Elkind and Lipmaa (2005) discuss the
concept of the Closure of a protocol. That is, given
some protocol Prot which ranks the candidates (as
we’ve seen scoring protocols do), we construct a new

protocol Prot.

Definition 12. Let Prot be any protocol which can
be used to rank all candidates. Then Prot, the Clo-
sure of Prot, is defined in the following recursive
fashion:

Let Prot({c},V) = ¢ Let Prot(C,V) =
Prot(C’,V|cr), where C' = C'\ {c}, and c is the can-
didate ranked last by Prot on the election (C, V).

The closure of a protocol has a very familiar
structure—this is because in fact Plurality = STV.
We are interested in general properties of the closure
of scoring protocols as generalisations of STV. We call
the closure of a scoring protocol a Scoring Elimina-
tion Protocol.

Manipulating Scoring Elimination Protocols

It has been shown (Bartholdi & Orlin 1991) that STV
is hard to manipulate in the general case. As STV is
one of the simplest scoring elimination protocols, this
indicates most are likely to be difficult to manipu-
late in the general case. We consider cases where the
problem is limited in some way.

Fixed Candidates As with any other voting pro-
tocol, COALITIONAL MANIPULATION is easy for scor-
ing elimination protocols when the number of candi-
dates is constant (Conitzer & Sandholm 2002).
However the algorithm described requires check-

ing up to (”!Jr:*l) different elections (where k is the
number of voters in a manipulating coalition), which
is very large, even for quite small n and k.

To get an idea, for example with n = 5, k = 10, we
have 2.5x 10! possible votes profiles. The situation is
much worse when the number of candidates grows—
when n = 8,k = 10, we have a staggering 3.1 x 1039
choices of vote profile, which is more than the total
number of keys in a 128 bit encryption algorithm!
Clearly this is not a feasible algorithm in such cases.

We outline a more efficient algorithm below:

Algorithm 2: COALITIONAL MANIPULATION

data : votes: k empty, unmarked votes
forall Elimination orders (c1,...,c, =p) do
2.1 forall ¢; in {c¢1,...,¢cn-1} do
Tally the current votes for {c;,...,cn}
forall ¢; in {ci+1,...,cn} do
while ¢; has less votes than c; do
if 3 v € votes unmarked then
2.2 ‘ Mark v, place c; in highest
remaining position
else
2.3 Elimination order is
impossible
Try next elimination order
Now “eliminate” c;
forall marked votes v in votes do
if v’s lowest cand. is ¢; then
Unmark v

We have found a successful manipulation
Fill all votes in votes in order: (p,cp—1,...)
L Return YES
We have found no successful manipulation
Return NO

The algorithm has a single data structure: the vote
profile we are constructing (votes), where each vote
at any point is marked “used” or “unused”, and con-
sists of an incomplete order (in the sense that it will
have only the top x < k positions filled). We be-
gin with k completely unspecified, unmarked votes in
votes.

The algorithm will investigate (n — 1)! poten-
tial elimination orders, the checking of each which
is O(n(m + nk)) in time. So the algorithm has
O(n!(m + nk)) time complexity (linear in m and k
and only factorial in n, which is reasonable for low
values).

It is clear that if the algorithm finds a manipu-
lation, that manipulation will work — the algorithm
clearly steps out the elimination procedure that will
result from the election (C,V & W).

It is not so clear that if the algorithm fails to find
a manipulation, none is possible. The following defi-
nitions will allow us to establish that result.

Definition 13. Given some fixed elimination order
(c1,...,cp) of the candidates, the ownership map v; :
Ve — C, defines to which candidate a vote “belongs”
to at stage i of the elimination. (That is, just prior
to the ith candidate being eliminated). It is defined:

;(v) = argmaxv(c;)
cj€
Jj=i

Definition 14. Given some manipulation W which
induces an elimination order (cy, ..., ¢,) of the candi-

dates; at a stage of the elimination 7, the “tally” of a
candidate ¢, denoted W;(c) is defined in the obvious
way:

Wi(c) = |{veWWV, i(v) =c}

Note that the ownership map is necessarily unde-
fined on votes marked unused at point i. We can
think as the unused vote as not contributing to the
tally of any candidate at that point. Also note that
the tally is an increasing function for any c; with 4,
whilst ¢ < j.

Lemma 5. For any fully specified manipulation W
(that is, without unused votes), at any stage i in the
elimination induced by W,

D Wie) = W]+ V|
ceC

Proof.

Y Wile) =) v e WwV,¢i(v) =}
ceC ceC

2, 21

ceCrveWwV
P (v)=c

SN 1= Y [Image(yi(v))]

veEWWV ceC veWwV
pi(v)=c

as ¢; is a well defined function on WV
= > 1=|WwV|=|W|+]|V] O
veEWWV

The next Lemma shows that Algorithm 2 will in
a sense minimize the number of votes each candidate
has at any stage of the elimination.

Lemma 6. Let e = (c1,...,¢, = p) be a elimination
order, and W a manipulation such that (C,W W V)
induces e. Let i be some stage of that manipulation,
and let X be the manipulation produced after the ith
elimination loop (Point 2.1) of Algorithm 2 when at-
tempting to guarantee e. Then for any candidate c,
we have

Xi(c) < Wi(c)

Proof. By induction on the candidates of e.

If ¢ has been eliminated by stage ¢, then clearly
Xi(c) = W;(c) = 0. Suppose on the contrary that ¢
has not been eliminated.

Let prev be the point at which the algorithm last
assigned a vote to ¢ (at Point 2.2).

If there is no such point it is clear that X;(c) is
equal to the the number of votes ¢ would have received
from V alone at stage i. As W cannot take votes away
from a candidate, the inequality holds.

Suppose there is such a point; then the candidate
that was being eliminated at stage prev, that is cprev,
must be lower in e than ¢ (as we assume ¢ has not yet
been eliminated by stage).

So we can assume by induction that

Xprev (Cprev) < Wprev (Cprev)

But as W induces e, cprev is the candidate eliminated
at point prev, so

Wprev (C) > Wprev (Cprev) > Xprev (Cprev)

But as the algorithm needs to give ¢ a vote stage
prev, we must have that

Xprev(c) = Xprev(cprev) +1

So we can see that, by combining the last two equa-
tions,
Wprev(c) 2 Xprev(c)

But prev was the last point the algorithm con-
tributed to ¢’s tally, so

Xi (C) = Xprev(c)

Also W;(e) is increasing with ¢, and i > prev, so
indeed

Wi (C) Z Wprev(c) Z Xprev(c) == Xz (C) O

We are now able to prove that if a solution to

COALITIONAL MANIPULATION exists for a given in-
stance, Algorithm 2 will not fail.

Proof of Validity of Algorithm 2. Suppose that there
is a manipulation W possible, but the algorithm fails
to find a solution.

Clearly the election (C,V W W) will lead to some
elimination order (cy,...,c,). Clearly as W leads to
p winning, ¢, = p, and so the algorithm will have
investigated this order. So the algorithm must have
broken at Point 2.3. Suppose we were ready to elim-
inate candidate ¢; and we were unable to ensure the
safety of candidate c;.

Denote the set of] votes constructed at stage ¢ of
the algorithm X. Note that as we have no remaining
unused votes, 1; is well defined on X.

Clearly W ensures the safety of ¢; at this point—
otherwise it would induce a different elimination or-
der.

So we have:

Wi(ci) < Wilg))
But we failed to ensure ¢;’s safety, so
Xi(ej) < Xiles)
Now by Lemma 6,
Xi(ei) < Wi(e)
So we conclude that
Xi(e;) < Wilg)) (1)
Given that |W| = |X| = k, by Lemma 5, (1) im-
plies that
Wi(ck) < Xl(ck)
for some ci. But this is impossible by Lemma 6. [

Note that this algorithm could be improved by the
use of backtracking: that is, if we are investigating
the elimination order (ci,¢a,...,¢, = p) and we fail
ensure that ¢; is eliminated (Point 2.3), then there is
no point in investigating any other elimination order
of the form (c1,¢,...,¢i,...).

Fixed Voters We consider the opposite problem:
when the number of voters is fixed (and the number
of candidates is allowed to grow unbounded). We see
that a similar easiness result holds for a broad class
of Scoring Elimination protocols (including STV):

Definition 15. A Scoring (Elimination) Protocol
Protg is a Finite Selection Scoring (Elimination)
Protocol if there exists a constant K such that for
all n > K, if S(n) = (aa,...,qy), then ax > 0 but
aKJrl:"':anz

Theorem 7. Let Prot be a Finite Selection Scoring
Elimination Protocol. Then, for a constant number
of voters, COALITIONAL MANIPULATION is in P for
Prot.

To prove this theorem we use the following simple
fact:

Lemma 8. Suppose that Prot is a Finite Selection
Scoring Elimination protocol, with a given K -value.
Then given any election (C,V'), there can be at most
Km candidates C' whom are ranked at a Kth or
higher position in some vote in V and Prot(C,V) =
Prot(C',V|c).

Proof. The first statement is clear by the definition
of Finite Selection Protocols. The second follows by
induction after considering the effect of elimination of
a candidate not in C’. Clearly one of these candidates
will be eliminated first as by definition they will have
a score of zero, and any candidate in C’ will have at
least a single point.

As any ¢ ¢ C’ is not in the top K positions of any
vote, elimination of ¢ will not promote any other can-
didate into such a position. Thus elimination of ¢ will
not affect any candidates’ score, or the composition
of C’. So by induction, all candidates not in C” will
be eliminated first. O

Proof of Theorem 7. To begin with, we can assume
that k < m. Otherwise we can simply reverse® all
votes in V' and make all others p = --- (everything
else arbitrary). Thus & is bounded.

Now suppose we are given the instance (C,V,p).
Let C’ be the set of candidates voted at or above Kth
position by V. We now must ourselves choose at most
Kk candidates to place at or above the Kth position.
There are less than n* (both k and K are bounded)
such choices.

Now call C” the set of candidates voted at or above
the Kth position by both V and our manipulation W.
By Lemma 8, the election will now be determined by
W|crn—that is the ordering of the remaining candi-
dates in C'\ C" by our votes is irrelevant.

So we only have to worry about ordering at most
(k + m)K candidates. So we only have less than
((k +m)K)!In®* choices that will affect the election
differently. We can thus simply check each. [l

Hardness Results for Scoring Elimination Pro-
tocols

We know (Theorem 4) that even with fixed candi-
dates, WCM is hard for almost all Scoring Protocols.
We also know (Conitzer & Sandholm 2002) that it
is hard for STV with fixed candidates. We will use a
reduction from WCM on Scoring Protocols to show
that it is indeed hard for almost all Scoring Elimina-
tion Protocols.

To do this we consider that manipulating a pro-
tocol Prot involves influencing who is eliminated in

3Note that for any elimination protocol, a pair of reverse votes
simply cancel each other out, regardless of elimination order.

some stage of the election. This involves making a
candidate come last in a single instance of Prot. With
this in mind, we define:

ANTI-WCM

GIVEN: A set C of Candidates with a disliked can-
didate d, and a set V of known voters, as set of cor-

responding weights V. A set of weights W of size k.
QUESTION: Is there a set of votes W (of size k),

such in that the weighted election (C,V W W, Vi W),
d will received the lowest score?

The Adjoint of a Scoring Protocol

We will need to know exactly which Scoring Protocols
ANTI-WCM is hard for. In order to establish this, we
will need the concept of the adjoint.

One thing we notice about the Plurality and Veto
protocols is that in a sense they are opposite—
Suppose candidate p gets the highest score under Plu-
rality voting over a vote profile V'; then on the profile
with all votes reversed (e.g. all first preferences last),
p will get the lowest score under Veto.

This concept is defined more clearly in the follow-

ing:
Definition 16. Given a vote v, the adjoint vote v*
is the vote which induces the opposite ordering on the
candidates. So if v induces the ordering ¢, > --- > c1,
then v* induces ¢; = -+ > ¢,

Mathematically this means

v (c) =n+1-v(c)
We also write V* = {v*,v € V}.

Definition 17. Given a scoring vector & =
(a1,...,a5) the Adjoint Vector is defined:

sk

a* = (a; —ap,...,a1 —aj)

Given a scoring protocol Protg, we define the Ad-
joint Protocol, Proty = Protg~, where S*(n) =
S(n)*.

Note that given a scoring vector in normal form,
the construction will guarantee the adjoint is also in
normal form. Note also that taking the adjoint is an
involution. That is v** = v and @** = &@. For example
Plurality* = Veto, and that Borda* = Borda.

The adjoint is in a sense the opposite: on the op-
posite set of votes (V*), it will rank candidates in the
opposite order.

Proposition 9. Let Prot be a scoring protocol, and
Prot* its adjoint. Let c1,ca € C, for some election
(C,V). Then Prot will rank c¢1 higher than ca on the
election (C,V) if and only if Prot* ranks c¢1 lower
than co on (C,V*).

Proof. Consider the score of ¢; under the adjoint of a
vote in the adjoint of a protocol:

U (€i) = 05 e ()41 = Q1 — O (v (e))+1)+1
= Q1 = Oyx(¢;) = A1 — Qp—y(c)+1
= a1 —vg(c)
So we have that
VZ (¢i) = may — Val(ci) O

Now the we have the requisite concepts, we can
show:

Lemma 10. WCM is N'P-hard for a scoring proto-
col Prot if and only if ANTI-WCM is N'P-hard for
the adjoint protocol Prot*.

Proof. This follows very easily from Proposition 9.

To reduce from an instance (C,p(d),V,V,W) of
WCM (ANTI-WCM), we simply output the instance

(C,p(d), V*,V,W) of ANT-WCM (WCM). O

Corollary 10.1. For any scoring pmtowl Protgz,
a = (a1,ag,...,a,), ANTI-WCM is in P if a3 =

Qg =+ "= Qp_1, and is N'P-complete otherwise.

Main Result for Scoring Elimination Protocols

Corollary 10.1 has shown us that for any (non-Veto)
scoring protocol, it is difficult to influence which can-
didate will be ranked last. It would seem natural to
try and extend this result to scoring elimination pro-
tocols, manipulation of which involves deciding which
candidates will be ranked last.

We begin by showing that the scoring protocol
that is the closure of Veto, the Coombs protocol
(Straffin Jr. 1980), is easy to manipulate when the
number of candidates is fixed (even when the con-
trolled votes are weighted!)

Theorem 11. On the Coombs (= Veto) protocol,
WCM is in P, assuming the number of candidates
is fized.

To prove this theorem, we need the following
Lemma:

Lemma 12. Let E be an instance of WCM on
the Coombs protocol, and e elimination order, e =
(c1,¢2,...,¢n). Let w be the vote inducing

Cp>Chp—1 > " >C

Then if there exists any set of votes W inducing
e, the set of votes X = {k copies of w} induces e.

Proof. By induction. For the general case, it is clear
that X gives at least as much last place weight to ¢;
as W. So as W results in ¢1’s elimination, X clearly
does. After c; is eliminated we will consider the elec-
tion on n — 1 candidates, with all votes in X of the
form:

Cp > Cp—1 >+ > C2

But we know by induction that this set will guar-
antee e. O

Proof of Theorem 11. Armored with Lemma 12, we
simply try each elimination order (ci,...,c, = D).
The lemma tells us that we only need to try one W
(the X above) to ascertain if the given elimination
order is possible. There are (n — 1)! such elimination

orders, as n is constant, we can simply test each one.
O

Now we know Coombs is in P for WCM, we inves-
tigate protocols different to Coombs.

Theorem 13. Let Protg be the closure of a scor-
ing protocol. Suppose S(n) = (a1, s, ...,a,). Then
WCM is (when the number of candidates is bounded)
inPifar=ay == qa,_1 for all n, and is NP-
hard otherwise.

Proof. Note that if the condition holds, Protg =
Coombs which by Theorem 11, is in P.

Suppose that the condidition does not hold. Let
n be the smallest value for which it does not. (So
n > 3).

We will construct a reduction from ANTI-WCM
on Protg on n candidates. Given an instance with
candidates c1,...,cy,, assume without loss of gener-
ality that the disliked candidate is ¢,. Add the fol-
lowing cyclical permutation of votes X to V, each

with equal weight K in V greater than the sum of
the original weights in V and W combined.

Cl »>Co > > Cp
Co " >Ch™C1
C3 > > Cp > Cl > C2

Cp > C1 > "> Cp—1

Set ¢ as the preferred candidate.

Note that all candidates will receive equal points
from X, whatever the protocol. Consider which can-
didate is eliminated next. Suppose it is ¢; for some
1 <1< n.

~ After the elimination of ¢; the votes in X will con-
stitute another cyclical permutation on the remaining
n — 1 candidates, however there will now be two votes
of the form:

Ci+1l = Ciy2 > = > Ci—1
(Here ¢pq1 = ¢1)

Now by assumption, as n was the smallest value
at which our protocol was not equivalent to Coombs,
from now on our protocol will eliminate the candidate
with the most last preferences. X has given ¢;—1 K
extra last preferences, which is more than the total
sum of last preferences in V and W. So ¢;_1 will
certainly be eliminated next.

After ¢;_; is eliminated we will again have in X a
cyclical permutation of the candidates, of which there
are now n — 2. But now we will have an 3 votes of
the form:

Ci+1l = Ciy2 = = = Ci—2

Continuing this argument by induction we see that
next c;_o is eliminated, then c;_3, until ¢;4; is the
eventual winner. So ¢; will win the election if and
only if ¢, is the first candidate eliminated. That is
there exists a solution to the instance of WCM on the
open protocol if and only if a there exists a solution
to the instance of WCM on the closed protocol. [

Clearly this result extends to unlimited candidates
for the non-Coombs protocols. We leave the difficult
of WCM on Coombs for unlimited candidates as an
open question.

5 Empirical Results

It is common (and not unfair) to criticise the use of
computational complexity as a measure of the diffi-
culty of a problem. After all N’P-completeness sim-
ply tells us that there exist difficult instances of the
problem, not that all or even many of the instances
are difficult. Certainly the instances of STV that NP-
hardness proofs generate are hardly average.

With this in mind, we considered what proportion
of the time is COALITIONAL MANIPULATION trivially
impossible to manipulate for STV. We consider the
question of trivially unmanipulable instances, defined
as follows:

Definition 18. Let F = (C,V,p, k) be an instance
of COALITIONAL MANIPULATION. Suppose the ap-
plication of STV to E induces the elimination order

Figure 1: Graphs of mean minimum k required against number of candidates (n) and number of voters (m)

e = (c1,...¢y). Then E is Trivially Unmanipula-
ble if for all manipulations W (of size k), STV applied
to (C,V & W) induces e.

This means that if the losing candidate in any
round of the unmodified election’s elimination always
loses by more than k, there’s no way that W can in-
fluence the order of elimination, let alone the winner
of the election. Certainly such instances are polyno-
mially recognizable.

In order to try and estimate the proportion of
such trivially unmanipulable elections, we ran a se-
ries of experiments, generating elections of various
sizes, and counting the minimum margin by which an
eliminated candidate lost by (a manipulating coali-
tion would need one more than this number to make
the election not trivially unmanipulable).

For each n / m combination, we ran 10000 experi-
ments consisting of m voters each with a random vote
selected with uniform probability from the n! possible
votes. The following table lists the mean minimum
margin (k) of elimination, as described above:

n\m 100 1000 10000 100000
2 | 7.8779 252486 79.4196 254.4100

3 |3.0341 9.9872 31.4037 101.2660

4 | 1.5856 5.2881 17.0930 53.4922
5109269 3.2786 10.6053 32.9697

6 | 0.5859 2.1891 6.9488 22.6186
7103744 1.5722 5.1262 16.2440

8 (0.2459 1.1827 3.8909 12.4222

9 | 0.1557 0.8753 3.0156 9.4553
10 | 0.0856 0.6896 2.3846 7.7521

In Figure 1 we plot first ﬁ against n to see that

(especially when the number of voters is high), this
forms a close to linear relationship, indicating that
this value k is likely proportional to % In the sec-

ond we plot k against v/m and find a very linear re-
lationship, strongly suggesting that this value of £ is
proportional to y/m. Both of these facts indicate that
as n and m rise, the fraction of the total number of
voters (m) required to avoid trivially unmanipulable
election falls.

This data demonstrates evidence that in general,
for random instances of STV, only relatively small
coalitional blocks are needed to affect election elim-
inations. Of course although this does not give an
accurate estimate on the number needed to manipu-
late an election, it does give a lower bound, and so
could conceivably be used as a heuristic method to
rule out many electoral instances as unmanipulable.

So we see that it appears that most electoral in-
stances are not trivially manipulable (for a relatively
small coalitional group) and so this heuristic would
be very unsuccessful, especially for large elections.

6 Conclusions

Voting protocols are an important method of deci-
sion making for agent-based systems. Although there
are many methods of collating votes, one very impor-
tant differential is the difficulty of manipulating such
methods. We know that such manipulation is always
possible, however it seems reasonable in this context
to measure difficulty in terms of computational com-
plexity. With such a framework, have found some
protocols easier to manipulate than others.

Results

In this paper we have seen that STV is hard to manipu-
late in general for the COALITIONAL MANIPULATION
problem. However, we have provided an algorithm
that will find a manipulation in a reasonable amount
of time, even with a relatively large number of can-
didates. Also we have demonstrated that when the
number of voters is small, manipulation is easy for
STV and a class of protocols containing it.

Considering generalisations of STV to more com-
plicated scoring techniques, we have established the
important result that WEIGHTED COALITIONAL MA-
NIPULATION is hard for any scoring elimination
protocol—bar the Coombs protocol—for any number
of candidates high enough to differentiate that proto-
col from Coombs.

Future Work

Although we have seen that all reasonable voting pro-
tocols are easy to manipulate for the simple question
of COALITIONAL MANIPULATION with limited num-
ber of candidates, it is an open question as to the dif-
ficulty of manipulating many general protocols (and
in particular scoring protocols) when the number of
candidates is not limited.

It would be of particular interest to know more
of the manipulation properties of scoring elimination
protocols, as they can be more interesting than the
scoring protocols they came from. For instance Borda
is known as Nanson’s protocol (Straffin Jr. 1980) and
is Condorcet Consistent, whilst Borda is not. Al-
though we have established that they are hard to
manipulate in the WEIGHTED COALITIONAL MaA-
NIPULATION case, it remains an open question as to
whether they are hard to manipulate in the simpler
case of COALITIONAL MANIPULATION (with unlim-
ited candidates).

References

Bartholdi, J. J. & Orlin, J. A. (1991), ‘Single
transferable vote resists strategic voting’, Social

Choice and Welfare 8(4), 341-354.
URL: hitp://www2.isye.gatech.edu/ jjb/papers/stv. pdf

Colebatch, T. (2004), ‘How party preferences picked
family first’, The Age.

Conitzer, V. & Sandholm, T. (2002), ‘Complexity of
manipulating elections with few candidates’.
URL: citeseer.ist.psu.edu/conitzer02complexity. html

Elkind, E. & Lipmaa, H. (2005), Hybrid Vot-
ing Protocols and Hardness of Manipulation,
in ‘First Spain Italy Netherlands Meeting on
Game Theory’, Maastricht, The Netherlands.
Workshop without proceedings. Webpage at
http://www.fdewb.unimaas.nl/sing/.

Gibbard, A. (1973), ‘Manipulation of voting schemes’,
FEconometrica 41, 587-602.

Hemaspaandra, E. & Hemaspaandra, L. (2005),
‘Dichotomy for voting systems’.
URL: http://www.citebase.orq/cqi-
bin/citations?id=oai:arXw.org:cs /0504075

Satterthwaite, M. (1975), ‘Strategy-proofness and ar-
row’s conditions: Existence and correspondence
theorems for voting procedures and social wel-
fare functions.’, Journal of Economic Theory

10, 187-217.

Straffin Jr., P. D. (1980), Topics in the Theory of Vot-
ing, Birkh&user Boston, Inc., 380 Green Street,
Cambridge, MA.

