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Abstract
Ranking data is a fundamental organizational activity.
Given advice, we may wish to rank a set of items to sat-
isfy as much of that advice as possible. In the Feedback
Arc Set (FAS) problem, advice takes the form of pairwise
ordering statements, ‘a should be ranked before b’. Instances
in which there is advice about every pair of items is known
as a tournament. This task is equivalent to ordering the
nodes of a given directed graph to minimize the number of
arcs pointing in one direction.

In the past, much work focused on finding good, effec-
tive heuristics for solving the problem. Recently, a proof of
the NP-completeness of the problem (even when restricted
to tournaments) has accompanied new algorithms with ap-
proximation guarantees, culminating in the development of
a PTAS (polynomial time approximation scheme) for solving
FAS on tournaments.

In this paper we re-examine many of these existing
algorithms and develop some new techniques for solving
FAS. The algorithms are tested on both synthetic and Rank
Aggregation-based datasets. We find that, in practice,
local-search algorithms are very powerful, even though we
prove that they do not have approximation guarantees.
Our new algorithm is based on reversing arcs whose nodes
have large indegree differences, eventually leading to a total
ordering. Combining this with a powerful local-search
technique yields an algorithm that beats existing techniques
on a variety of data sets.

1 Introduction

1.1 The Feedback Arc Set Problem The Feed-

back Arc Set (FAS) problem is a key ranking prob-
lem, asking us to rank items in a set given only advice
about the best way to order specific pairs. A ranking
π is simply a permutation of that set. Thus the only
information we have to help us to form our ranking is a
set of statements of the form ‘a should be ranked before
b’. These statements may be contradictory: the aim of
the FAS problem is to produce a π that violates as few
of these pairwise statements as possible.

The natural graph representation of the problem
uses a vertex for each item and a directed arc from a
to b for each demand ‘a should be ranked before b’. In
this context, the aim is to order the vertices from left to
right so that the number of arcs pointing left (back-arcs)
is as small as possible.

Given some ranking π, if we remove the set of
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back-arcs, we will eliminate all cycles in the graph.
We call such a set a ‘Feedback Arc Set’. An
equivalent formulation of the problem is therefore: given
a digraph G, find the smallest subset of the arcs of G
that intersects all cycles in G (whose removal therefore
renders G acyclic). In this paper we focus on the special
case of tournament graphs, in which there is an arc
between every pair of nodes. We also consider weighted

tournaments, in which the weights on arcs u → v and
v → u must sum to 1.

Originally motivated by problems in circuit de-
sign [13], FAS has found applications in many areas,
including computational chemistry [21, 19], and graph
drawing [12]. An application to Rank Aggregation

in particular has seen much focus solving the problem
on directed complete graphs (tournaments).

1.2 The Rank Aggregation Problem Closely re-
lated to the FAS problem is the Rank Aggregation

problem. Given a set of rankings, we must find a sin-
gle ranking that best represents the consensus. Dwork et
al. [10] outline the problem and motivate it as a method
for aggregating data from search engines. There is a sig-
nificant body of work studying this problem, which is
known as MetaSearch [5].

Precisely what best means is a difficult issue, and it
relates to how we interpret the similarity of rankings.
The Kemeny distance [16] K(π, σ) between two rank-
ings, π and σ, is defined as the number of pairs i, j for
which π ranks i above j, yet σ ranks j above i. In this
paper, the Rank Aggregation problem seeks a rank-
ing τ that minimizes the sum of the Kemeny distances
from τ to each of the input rankings.

This problem is a special case of FAS on weighted
tournaments. There is a fairly simple reduction from
Rank Aggregation to FAS: for each i, j, if i is ranked
above j in some fraction w of the input rankings, place
an arc between i and j with weight w.

1.3 The Linear Ordering Problem A very similar
problem to the Feedback Arc Set problem is the
Linear Ordering problem. Here we have a matrix
(cij), and we want to choose an ordering σ such that∑

i<σj cij is minimized. The weighted tournament
version of FAS is a special case of this, under the



constraint that cij = 1− cji.

1.4 Hardness of these problems The FAS prob-
lem is one of Karp’s [15] original NP-complete problems
(in the general case). Dwork et al. [10] prove the Rank

Aggregation problem is NP-hard, even with as few
as 4 input rankings. Recently, the FAS problem has
been shown to be NP-hard even on unweighted tourna-
ments [7]. Given this, it is natural to ask for an approx-
imation algorithm which runs in polynomial time, yet
is guaranteed to differ in cost from the optimal solution
by a small factor.

1.5 Algorithms with Guarantees The first con-
stant factor approximation algorithm for FAS, designed
primarily for tournaments, was the pivoting algorithm
of Ailon et al. [1]. Intuitively similar to quicksort, it
uses on average O(n log n) comparisons for an expected
3-approximation on tournament graphs.

Coppersmith et al. [9] show that ordering the nodes
by their indegrees is a 5-approximator on tournament
instances, regardless of how ties are broken. The
vast majority of sporting leagues use this heuristic to
rank teams (though often with elaborate tie-breaking
mechanisms).

Finally, Kenyon-Mathieu and Schudy completed the
approximation picture for tournaments picture with a
PTAS (polynomial-time approximation scheme) [18].
This scheme comprises a simple moves-based local
search heuristic—which we investigate in isolation
below—and the PTAS of Arora, Frieze and Kaplan [3]
for the Maximum Acyclic Subgraph problem.1

1.6 Heuristics Viewing the input as a directed
graph, we define the Kendall score of a node to be its
indegree. One of the simplest and earliest heuristics de-
veloped for the FAS problem ranks the items according
to their Kendall scores, breaking ties arbitrarily [17].
Ali et al. [2] and Cook et al. [8] improve this technique
by considering various methods of breaking ties. Let us
define the Iterated Kendall algorithm to be:

Rank the nodes by their Kendall scores. If
there are nodes with equal score, break ties
by recursing on the subgraph defined by these
nodes. If there is a subgraph whose elements
all have equal indegree, rank them arbitrarily.

Eades et al. [11] created an algorithm that is in fact
quite similar to Iterated Kendall, possibly inspired
by selection sort. We define the Eades algorithm to be:

1We did not implement this algorithm during this experimental
evaluation. Although theoretically very powerful, the algorithm
is complicated and impractical to implement.

Select the node that has the smallest Kendall
score and place it at the left, breaking ties
arbitrarily. Recurse on the remainder of the
nodes, having recomputed the indegrees on the
remaining subgraph.

In retrospect, the tie breaking could be done in a more
sophisticated way.

Chanas and Kobylanski [6] present an algorithm
for the Linear Ordering problem based on repeated
application of a procedure analogous to insertion sort.
In Section 2.2 we outline the algorithm, and compare it
to other sort-based methods.

Saab [23] presents an algorithm using a divide-and-
conquer approach. The idea is to split the input into two
halves, minimizing the number of back-arcs between the
halves, and then recurse on each half. However this
minimization task is a difficult one: it is a directed
version of the Min Bisection problem, and solving
it would solve FAS. We do not explore this algorithm
further.

1.7 Our Contributions / Paper Organization
In Section 2 we provide details of the algorithms we
will test. Some are existing procedures (especially lo-
cal search approaches), others are our improvements to
them, still others are based on our scheme of revers-
ing arcs (in an organized manner) to destroy directed
triangles, and thus produce a total ordering.

We then show in Section 3 that some of the existing
heuristic algorithms are not guaranteed approximators
for the FAS problem.

We tested all algorithms on not only synthetic data
(as has generally been the method of testing heuristics
in the past), but also on three sets of FAS problems
generated from Rank Aggregation data. This work
is outlined in Section 4.

The results of these tests and further analyses are
presented in Section 5. We conclude and supply ideas
for further work in Section 6.

2 Algorithm details

2.1 Improving the Eades Algorithm The Eades

algorithm focuses on the left side of the ranking. We
improve this by allowing the selection of a node to either
end of the ranking. Let In(v) stand for the indegree
of node v, with Out(v) its outdegree. We define the
algorithm Eades Improved to be:

Select the node u that maximizes |In(u) −
Out(u)| and place it at the appropriate end of
the ranking. Recurse on the subgraph induced
by removing u. Again, break ties arbitrarily.



2.2 Sorting Algorithms As suggested above, Ailon
et al.’s algorithm [1] is much like quicksort. For this
paper Quicksort is defined to be:

Choosing pivots uniformly at random, run
the quicksort algorithm with the comparison

function: u < v if and only if u→ v.

Unlike traditional sorting problems, in which we assume
there is a total order on the data, the difficulty in FAS

is the lack of transitivity, which sorting algorithms are
designed to exploit. Nevertheless, sorting algorithms
provide schemes for deciding which of the advice to
believe.

Cook et al. [8] focus on ensuring a Hamiltonian
path exists in along the final ordering of the nodes;
any sensible algorithm should achieve this. The method
they use to reach this is in effect a Bubblesort of
the tournament, using the same comparison function
as Quicksort.

To our knowledge, no paper has studied the
Mergesort approach. In this paper we test its per-
formance.

As noted above, the Eades algorithm is the obvi-
ous analogy to selection sort (with our improved version
being a two-sided selection sort). Chanas and Kobylan-
ski [6] apply an insertion technique to the Linear Or-

dering problem that is more involved than the usual
insertion sort. Their ‘SORT’ procedure is:

Make a single pass through the nodes from the
left to the right. As each node is considered, it
is moved to the left, inserted into the position
that minimizes the number of back-arcs.

Since executing SORT cannot increase the number
of back-arcs, the authors first propose an algorithm
SORT* which repeatedly applies SORT until there is
no improvement in the number of back-arcs. They
also show that the composition of two steps SORT
◦ REVERSE (where REVERSE simply reverses the
order of the nodes) cannot increase the number of
back-arcs. The Chanas algorithm is therefore (SORT*
◦ REVERSE)*, which Chanas and Kobylanski show
outperforms the original version in practice.

2.3 Local Search Algorithms One approach that
has been used successfully for many optimization prob-
lems is to begin with some solution and then iteratively
improve that solution until no further improvement is
possible. Researchers have met with success in prov-
ing approximation bounds for local search schemes for
the k-median [4] and k-means [14] problems, along with
related problems. Here we consider two such local im-
provement schemes for FAS:

The Swaps heuristic, which swaps the position of two
nodes in the order.

The Moves heuristic, which moves one node to any
position in the order, leaving the relative order of
the other nodes unchanged.

In this paper we show that neither algorithm can
provide an approximation guarantee. We found that
the Moves heuristic performs well in practice, but that
Swaps does not: so the latter was omitted from our
experiments.

One particular advantage of a local search tech-
niques is that the initial solution it is given can be the
output of an approximation algorithm. Consequently,
the local search approach inherits the approximation
guarantee.

Chanas An application of the SORT step of
Chanas has the effect of checking, for each vertex of
the graph, from left to right, if a move to the left in the
order is possible. This is essentially a scheme for select-
ing which Moves-style changes to make. The opera-
tion SORT ◦ REVERSE does the same thing, but with
moves to the right. So Chanas is simply a method for
investigating Moves in a particular order. We devel-
oped an alternative algorithm, termed Chanas Both:
the SORT procedure is allowed to move a node either

left or right, to the position that results in the fewest
back-arcs. A consequence of this modification is that
some nodes may be moved more than once in a single
SORT pass.

2.4 Triangle-Destroying Algorithms A tourna-
ment only has a cycle if it has a directed triangle (~△).
We therefore considered algorithms that destroy di-
rected triangles by selecting arcs to reverse. It might
seem more natural to delete arcs, but this would make
the digraph no longer a tournament, creating the pos-
sibility of cycles without the presence of ~△s. Our algo-
rithms work in the following way:

While the tournament is not acyclic, choose

an arc and reverse its orientation. Once the
tournament is acyclic, use the ordering of the
nodes as the solution to the original problem.

The choice of arc to be reversed affects the performance
and running time of this procedure; the remainder of
this section examines various heuristics.

We call the number of ~△s an arc is involved in its
triangle count. The first algorithm, Triangle Count,
simply chooses the arc with the highest triangle count.
There is a pitfall here though: reversing an arc can
create a new ~△ that did not previously exist.

To avoid this problem we instead can choose the arc
for which the number of ~△s after the reversal is least.



We call this heuristic Triangle Delta. A potential
problem with Triangle Delta could be the existence
of a tournament that was not acyclic (and thus still had
triangles), yet contained no arcs whose reversal would

lower the number of ~△s. Lemma 2.1 proves that this
situation is impossible.

Lemma 2.1. Let T be a tournament. Then if T has a

cycle, there exists an arc e ∈ T such that reversing e
will reduce the triangle count of T .

Proof. See Appendix A.

We also considered a third approach, called Tri-

angle Both: choose the arc with the highest triangle
count, provided that it reduces the number of ~△s. Note
that calculating the triangle count, and the change in
~△s, for every arc of the digraph requires O(n3) opera-
tions.

In a weighted tournament, the weight of a ~△ is the
sum of the weights of its arcs. Therefore in such graphs,
the triangle count of an arc is the sum of the weights of
the ~△s it is involved in.

2.5 Degree Difference Algorithms We designed
a new algorithm Degree Difference, that selects
an arc to reverse based on a criterion that may be
related to the triangle count. We select the arc u → v
for which the difference between u’s indegree and v’s
indegree is greatest. Unfortunately, it may take Θ(n)
time to find such an arc at each iteration. Nevertheless,
this algorithm always makes progress towards a total
ordering (which we use as our solution), as the value
of

∑
v In(v)2 increases whenever an arc from a higher-

degree to a lower-degree node is reversed.
In an effort to speed up the Degree Difference

algorithm, we used a sampling technique. We sample
log n vertices (favoring high indegree) to potentially
be the ‘tail’ of the arc, and another log n (favoring
low indegree) to potentially be the ‘head’. We then
check each of the log2 n arcs between sampled vertices,
choosing the back-arc of highest degree difference. We
resample if no back-arc of non-negative degree difference
is found. This algorithm is called Degree Difference

Sampled 1, and it takes approximately O(n2 log2 n)
time on average.

A further variation, Degree Difference Sam-

pled 2, maintains two lists: one of potential head
nodes, and one of potential tail nodes. A node v is
a potential head if its indegree, In(v), is not unique or
there is no node of indegree In(v)− 1. Similarly, a node
u is a potential tail if In(u) is not unique or there is no
node of indegree In(u)+1. The motivation for this is to
increase

∑
v In(v)2. We sample log n nodes from each

list uniformly, and from those pairs select the arc with
the largest indegree difference to reverse.

3 Approximation counter-examples

We now show that various algorithms for FAS cannot
guarantee reasonable factor approximations.

A word on notation: All graphs shown are tourna-
ments (complete graphs), so in the interest of readabil-
ity, not all arcs are drawn. In the figures below, only
back-arcs, with respect to the given ordering, are dis-
played. So all pairs of nodes with no arc displayed are
assumed to have a right pointing arc between them.

(a) Global Optimum

(b) Local Optimum

Figure 1: Standard Bad Example

3.1 Standard bad example This example consists
of a completely transitive tournament of size n, with
one minor perturbation—there is a single back-arc,
from the last node (node n) to the first (node 1).
Figure 1(a) shows this (global) optimum configuration;
a local optimum for the Swaps heuristic, shown in
Figure 3.1, has cost n− 2.

Note also that there is no guarantee that Bubble-

sort will start with node n placed after node 1. With-
out this, it will also reach the costly local optimum.

Figure 2: The Counterexample for the Eades algo-
rithm.

3.2 The Eades algorithms Figure 2 shows a mod-
ification to the standard bad example of Section 3.1,
in which the optimum solution has two back-arcs: from
nodes n−1 and n to node 1. Displayed below each node
is its indegree. The Eades and Eades Improved al-
gorithms both place node 2 at the left of their solution
(as it has the lowest indegree); with that node removed,



the induced subgraph is precisely the same as the orig-
inal one, albeit one node smaller. The final order will
therefore be (2, 3, 4, 5, . . . , n− 1, n, 1), which has a cost
of n− 3.

(a) Local Optimum

(b) Global Optimum

Figure 3: Counterexample family (n even) for the
Moves local search heuristic (and thus for Chanas

& Chanas Both). (a) There is a back-arc from
each even-numbered node (black) to each odd-numbered
node (white) that is at least 3 positions preceding. (b)
Shows the global optimum. The black nodes have the
same relative ordering to one another, as do the white
nodes.

3.3 Moves and Chanas The configuration on the
left of Figure 3 is a local optimum for the Moves heuris-
tic. Following the discussion at the end of Section 2.3, it
is also a configuration that Chanas and Chanas Both

can be stuck in.
The spacing of the back-arcs ensures that it is never

an improvement to move a single node. The cost of the
local optimum is n2/8 − n/4. The global minimum,
shown in Figure 3(b), places all black nodes before all
white nodes, without changing the relative order within
the color group, thus incurring a cost of n/2. So the
locality gap here is in Ω(n).

4 Experiments

We conducted a series of experiments to validate the
empirical performance of these algorithms. All experi-
ments were conducted on 4-core Intel Xeon 3.2GHz ma-
chine, with 8 gigabytes of physical memory. All algo-
rithms were compiled by gcc version 3.4.6 with the -O3

optimization flag.
In order to investigate the significance of initial

solution quality to the effectiveness of local search
techniques, we first tested each algorithm in isolation—
for the local search algorithms, this meant starting
from a random ordering—and then passed the output
of each algorithm into both the Chanas and Moves

algorithms.
Note that passing Chanas as input to Chanas is

an interesting case—although Chanas is a local search

algorithm (which would imply that a second run would
have no further effect), the SORT* ◦ REVERSE step
can significantly change the ordering without affecting
the solution quality (in terms of number of back-arcs).
So repeated calls to Chanas can sometimes get the
algorithm out of a local plateau. However, it is difficult
to tell when this is going to happen.

4.1 Datasets We tested the FAS algorithms on the
following synthetic dataset.

Biased Starting with a total order from nodes 1 to
n, we reverse each arc independently with probability
p. In particular, with p = 0.5, we have a random
tournament.

The following datasets are based around the idea of
aggregating inconsistent rankings of a set of datapoints
into a FAS-style tournament.

WebCommunities Our colleague, Laurence
Park, provided us with a set of 9 different complete
rankings of a large set of documents (25 million) [22].
From this we took 50 samples of 100 documents and
considered the rankings of each of those subsets.

EachMovie We used the EachMovie collaborative
filtering dataset [20] to generate tournaments of movie
rankings. The idea here was to identify subgroups
(we used simple age/sex demographics) of the users,
and then generate tournaments that represented the
‘consensus view’ of those groups.

The EachMovie dataset consists of a vote (on a scale
of one to five) by each user for some set of the movies.
To form a tournament from a group we took the union
of movies voted for by that group and then set the arc
weight from movie a to movie b to be the proportion of
users who voted a higher than b. For consistency, we
sampled each tournament down to size 100.

5 Discussion of Results

We tested all of the algorithms on a large number of
data sets. We selected just four of the data sets to dis-
play in Table 1: these show a variety of performance
characteristics. We first note the striking performance
of the Chanas local search procedure. Despite coming
with an approximation guarantee, the Quicksort pro-
cedure performs relatively poorly, as does the Merge-

sort algorithm. Bubblesort does surprisingly well
on the WebCommunities dataset, but only after the
Chanas procedure is applied; otherwise it is possibly
the worst of the algorithms. The Eades and Eades

Improved algorithms are strong, but there should be a
slight preference for the latter due to its lower running
time.

As expected, the Triangle Both algorithm is very
slow, though it is a strong performer when combined



Table 1: Each algorithm is tested on the Biased data set with p = 0.6 and 0.95. We also tested them on the
WebCommunities and EachMovie data sets, as described above. In addition to the basic algorithms, we ran
Moves and Chanas-style local search procedures on the outcomes of each of these algorithms. We report the
average of the percentage (%) relative difference between the number of back-edges (Errors), compared to the
Chanas heuristic, over all problem instances in the dataset. We also report the percentage (%) of times each
algorithm wins (produces the best amongst the solutions generated), with the win split between algorithms that
are equal first on a particular instances (Wins). Finally, the average running time (in seconds) of each procedure
(including the local search cleanups) is reported separately Time.

0.6 0.95 laurence eachmovie
Variant Errors Wins Time Errors Wins Time Errors Wins Time Errors Wins Time

— 12.02 0.0 2.1 29.84 0.0 1.9 15.70 0.0 0.1 28.96 0.0 0.3
It. Kend. move 0.37 6.7 4.9 0.30 5.2 3.8 0.00 3.3 0.4 0.40 9.8 0.6

chan -0.31 9.7 6.7 0.00 7.3 4.5 0.00 3.7 0.3 -0.01 9.9 0.8

— 9.89 0.0 4.7 62.17 0.0 4.7 31.49 0.0 0.2 34.78 0.0 0.7
Eades move 0.58 3.7 7.5 0.31 5.3 6.9 0.01 2.8 0.6 0.35 6.8 1.0

chan -0.25 8.3 9.7 0.00 7.3 7.3 -0.00 3.6 0.4 0.00 5.7 1.2

— 8.65 0.0 1.9 52.23 0.0 1.9 19.45 0.0 0.1 37.65 0.0 0.3
Eades Imp. move 0.61 2.8 4.7 0.32 5.0 4.7 0.00 4.5 0.3 0.47 2.5 0.6

chan -0.17 6.6 6.8 0.00 7.3 4.7 0.00 3.8 0.3 0.04 10.0 0.8

— 0.00 74.0 5.6 0.00 27.8 2.8 0.00 11.8 0.1 0.00 75.7 0.6
Chanas move 0.00 32.8 7.5 0.00 12.1 5.3 0.00 5.0 0.3 0.00 35.3 0.8

chan 0.00 6.3 7.8 0.00 7.3 5.5 0.00 3.7 0.3 0.00 6.0 0.9

— 35.28 0.0 1.6 731.12 0.0 1.6 75.39 0.0 0.1 210.08 0.0 0.2
Bubble. move 0.76 3.9 4.6 0.21 6.7 3.4 0.00 2.9 0.3 0.25 11.8 0.6

chan 0.02 4.2 7.2 0.00 7.2 3.6 -0.00 4.7 0.3 0.01 6.9 0.8

— 23.25 0.0 1.6 130.91 0.0 1.6 0.87 0.7 0.1 65.73 0.0 0.2
Merge. move 0.80 2.4 4.6 0.23 6.1 5.2 0.00 3.2 0.2 0.39 10.6 0.6

chan 0.02 5.5 7.2 0.00 7.2 4.5 0.00 3.5 0.3 -0.01 14.4 0.9

— 23.66 0.0 1.6 135.85 0.0 1.6 0.84 0.8 0.1 61.68 0.0 0.2
Quick. move 0.79 3.4 4.6 0.22 6.6 4.4 0.00 3.3 0.2 0.39 7.2 0.6

chan 0.03 4.8 7.1 0.01 7.2 4.5 0.00 3.5 0.2 -0.01 12.2 0.8

— 2.12 0.2 345.4 0.06 21.5 208.9 0.01 9.6 2.7 1.13 7.2 31.2
Tri. Both move 0.24 11.6 347.9 0.05 9.9 211.1 0.00 4.7 2.8 0.05 17.9 31.5

chan -0.36 12.7 349.8 0.03 6.8 211.8 0.00 3.8 2.8 -0.16 19.5 31.7

— 7.47 0.0 158.0 0.03 24.2 27.8 0.02 5.3 0.4 2.27 2.7 8.5
D. D. move 0.58 4.8 160.7 0.03 11.1 29.5 0.00 5.1 0.5 0.17 11.3 8.8

chan -0.17 5.0 162.8 0.00 7.3 29.8 -0.00 4.0 0.5 -0.10 17.6 9.0

— 11.25 0.0 9.4 48.17 0.0 4.0 0.41 0.0 0.1 23.33 0.0 0.8
D. D. Sam. 1 move 0.31 9.2 12.2 0.29 5.4 5.8 0.00 3.7 0.3 0.38 9.9 1.1

chan -0.36 11.1 14.0 0.00 7.2 6.1 -0.00 4.0 0.3 0.01 9.2 1.3

— 10.75 0.0 15.6 100.18 0.0 6.0 0.84 0.0 0.1 27.05 0.0 1.2
D. D. Sam. 2 move 0.35 7.6 18.3 0.28 5.7 8.4 0.00 3.3 0.3 0.36 3.9 1.6

chan -0.34 10.4 20.1 0.00 7.2 8.7 -0.00 3.9 0.3 -0.07 12.7 1.8

— 0.85 11.8 17.6 0.28 12.0 11.5 0.00 12.5 0.7 0.45 29.4 1.9
Moves move 0.87 1.9 19.4 0.28 5.5 14.3 0.00 4.7 0.8 0.47 8.4 2.2

chan -0.03 3.8 21.6 0.03 6.7 14.2 -0.00 3.9 0.8 0.08 10.1 2.3

— 0.78 14.0 3.0 0.22 14.3 3.6 0.00 9.3 0.2 0.37 31.0 0.4
Chan. Both move 0.79 3.3 4.8 0.22 6.5 5.4 0.00 3.5 0.3 0.38 10.6 0.7

chan -0.05 4.9 7.0 0.03 6.7 5.9 -0.00 4.0 0.3 0.04 11.7 0.8



with local search. The Degree Difference algorithm
is similar, though at a different point on the perfor-
mance/speed tradeoff. The sampling methods for De-

gree Difference, Degree Difference Sampled 1

and Degree Difference Sampled 2, seem a better
compromise.

5.1 The Time-Effectiveness Tradeoff Figure 4
highlights the relative performance and efficiency of
selected algorithms. On the Biased (p = 0.6) data set,
the two algorithms that cannot be said to be worse
than others are the hybrid of Degree Difference

Sampled 1 and Chanas, and the hybrid of Iterated

Kendall and Chanas. Chanas by itself, not shown
in this picture, unsurprisingly takes less time than these
two algorithms. These three algorithms are therefore
the subject of further study.

There is a certain random component to all of
these algorithms. For Iterated Kendall, there is less
randomness in the algorithm, and this is borne out in
the results. But for Chanas, the input is in fact a
random ordering of the items. In Figures 5(a) and 5(b),
we repeat each algorithm twice, four times, eight times,
etc. to see whether spending greater computation time
produces better solutions. Unfortunately for Iterated

Kendall, there seems to be a relative stagnation in
its effectiveness, especially on the EachMovie data.
It is hard to differentiate between the hybrid Chanas

and Degree Difference Sampled 1 algorithms.
Naturally, one could run Wilcoxon-style non-parametric
tests to show that one algorithm is significantly better
than the other in a pure statistical sense. However, the
difference may not be important, and it can be hard to
compare algorithms that take slightly different running
times. We leave the graphs themselves as the strongest
evidence of the similarity.

6 Conclusion

In this paper we outlined the operation of a number
of algorithms which aim to solve the FAS problem,
extending them where possible and developing a variety
of new algorithms. We analyzed some of algorithms
from the perspective of algorithmic approximability,
proving that they cannot be good approximators. These
results complement existing results about algorithms
which are proven approximators.

Additionally we examined each algorithm from a
practical perspective, testing their performance on two
sets of real world data, as well as synthetic data. We
found in practice Chanas is a very effective algorithm,
however using the output of a different algorithm as
input to Chanas is more effective again.

The most effective algorithms to do this with were

Iterated Kendall and Degree Difference Sam-

pled 1, with the first being faster, whereas the second
was more effective. We gave these algorithms more time
(by repeated application), and found that Degree Dif-

ference Sampled 1 became more effective, though
only slightly better than Chanas.

6.1 Further Work The Chanas Both algorithm
runs in significantly reduced time in comparison to
Chanas. However its performance is not as impressive.
Perhaps there is a better order to investigate local moves
than both algorithms that will run quickly, yet perform
as well as Chanas.

The Degree Difference Sampled 1 algorithm
performs well, yet there are many other ways of sam-
pling the vertices to check indegrees. These could be
investigated—leading potentially to both better per-
forming algorithms and theoretical results about them.

Most of the algorithms outlined here work unmod-
ified on non-tournament digraphs. However, some, for
example Triangle Both and Degree Difference,
will not work as currently specified, but perhaps analo-
gous versions could be found that will. It would be prof-
itable to test all these algorithms on non-tournaments
in much the same way as in this paper.

An issue that has not been addressed in great detail
in this paper is how the algorithms scale for larger data
sets. Further work investigating the large-scale time-
performance of these algorithms would be of value.
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A Proof of Lemma 2.1

Let σ be an ordering on the vertices of T that induces
a minimum Feedback Arc Set. Let a = v ← w be a
back-arc of maximal length under σ, that is maximizing
σ(w) − σ(v). We claim that reversing a will lower the
triangle count.

Firstly, we note that reversing a will not create any
~△s of the form v-w-x, where x is to the right of both v
and w, and this would imply a back-arc v ← x that is
‘longer’ than v ← w; this is impossible by our choice of
a. Similarly, no ~△ x-v-w can be created where x is to
the left of both vertices. So any ~△ created must involve
an x between v and w.

Consider the four possibles for a node x that is
placed between v and w by σ:

1. v ← x← w (reversing a will create a triangle). Say
there are A such x’s.

2. v → x → w (reversing a will delete a triangle). B
of these.

3. v → x ← w (reversing a will have no effect). C of
these.

4. v ← x→ w (no effect). D of these.

Since σ is optimal, moving v to the position after
w will not reduce the back-arc count. So the number
of back-arcs into v from such x’s must be less than the
number of forward arcs from v to such x’s (strictly, as
there is a back-arc from w to v). So we have

A + D < B + C .

Similarly, moving w before v will not improve the order,
so we have

A + C < B + D .

Combining these quickly gives

2A + D + C < 2B + C + D =⇒ A < B ,

and therefore the number of ~△s will decrease.


